/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.optimization;

import java.util.Arrays;
import java.util.Comparator;

import org.apache.commons.math3.analysis.MultivariateVectorFunction;
import org.apache.commons.math3.exception.ConvergenceException;
import org.apache.commons.math3.exception.MathIllegalStateException;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.NullArgumentException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.random.RandomVectorGenerator;

Base class for all implementations of a multi-start optimizer. This interface is mainly intended to enforce the internal coherence of Commons-Math. Users of the API are advised to base their code on DifferentiableMultivariateVectorMultiStartOptimizer.
Type parameters:
  • <FUNC> – Type of the objective function to be optimized.
Deprecated:As of 3.1 (to be removed in 4.0).
Since:3.0
/** * Base class for all implementations of a multi-start optimizer. * * This interface is mainly intended to enforce the internal coherence of * Commons-Math. Users of the API are advised to base their code on * {@link DifferentiableMultivariateVectorMultiStartOptimizer}. * * @param <FUNC> Type of the objective function to be optimized. * * @deprecated As of 3.1 (to be removed in 4.0). * @since 3.0 */
@Deprecated public class BaseMultivariateVectorMultiStartOptimizer<FUNC extends MultivariateVectorFunction> implements BaseMultivariateVectorOptimizer<FUNC> {
Underlying classical optimizer.
/** Underlying classical optimizer. */
private final BaseMultivariateVectorOptimizer<FUNC> optimizer;
Maximal number of evaluations allowed.
/** Maximal number of evaluations allowed. */
private int maxEvaluations;
Number of evaluations already performed for all starts.
/** Number of evaluations already performed for all starts. */
private int totalEvaluations;
Number of starts to go.
/** Number of starts to go. */
private int starts;
Random generator for multi-start.
/** Random generator for multi-start. */
private RandomVectorGenerator generator;
Found optima.
/** Found optima. */
private PointVectorValuePair[] optima;
Create a multi-start optimizer from a single-start optimizer.
Params:
  • optimizer – Single-start optimizer to wrap.
  • starts – Number of starts to perform. If starts == 1, the optimize will return the same solution as optimizer would.
  • generator – Random vector generator to use for restarts.
Throws:
/** * Create a multi-start optimizer from a single-start optimizer. * * @param optimizer Single-start optimizer to wrap. * @param starts Number of starts to perform. If {@code starts == 1}, * the {@link #optimize(int,MultivariateVectorFunction,double[],double[],double[]) * optimize} will return the same solution as {@code optimizer} would. * @param generator Random vector generator to use for restarts. * @throws NullArgumentException if {@code optimizer} or {@code generator} * is {@code null}. * @throws NotStrictlyPositiveException if {@code starts < 1}. */
protected BaseMultivariateVectorMultiStartOptimizer(final BaseMultivariateVectorOptimizer<FUNC> optimizer, final int starts, final RandomVectorGenerator generator) { if (optimizer == null || generator == null) { throw new NullArgumentException(); } if (starts < 1) { throw new NotStrictlyPositiveException(starts); } this.optimizer = optimizer; this.starts = starts; this.generator = generator; }
Get all the optima found during the last call to optimize. The optimizer stores all the optima found during a set of restarts. The optimize method returns the best point only. This method returns all the points found at the end of each starts, including the best one already returned by the optimize method.
The returned array as one element for each start as specified in the constructor. It is ordered with the results from the runs that did converge first, sorted from best to worst objective value (i.e. in ascending order if minimizing and in descending order if maximizing), followed by and null elements corresponding to the runs that did not converge. This means all elements will be null if the optimize method did throw a ConvergenceException). This also means that if the first element is not null, it is the best point found across all starts.
Throws:
Returns:array containing the optima
/** * Get all the optima found during the last call to {@link * #optimize(int,MultivariateVectorFunction,double[],double[],double[]) optimize}. * The optimizer stores all the optima found during a set of * restarts. The {@link #optimize(int,MultivariateVectorFunction,double[],double[],double[]) * optimize} method returns the best point only. This method * returns all the points found at the end of each starts, including * the best one already returned by the {@link * #optimize(int,MultivariateVectorFunction,double[],double[],double[]) optimize} method. * <br/> * The returned array as one element for each start as specified * in the constructor. It is ordered with the results from the * runs that did converge first, sorted from best to worst * objective value (i.e. in ascending order if minimizing and in * descending order if maximizing), followed by and null elements * corresponding to the runs that did not converge. This means all * elements will be null if the {@link * #optimize(int,MultivariateVectorFunction,double[],double[],double[]) optimize} method did * throw a {@link ConvergenceException}). This also means that if * the first element is not {@code null}, it is the best point found * across all starts. * * @return array containing the optima * @throws MathIllegalStateException if {@link * #optimize(int,MultivariateVectorFunction,double[],double[],double[]) optimize} has not been * called. */
public PointVectorValuePair[] getOptima() { if (optima == null) { throw new MathIllegalStateException(LocalizedFormats.NO_OPTIMUM_COMPUTED_YET); } return optima.clone(); }
{@inheritDoc}
/** {@inheritDoc} */
public int getMaxEvaluations() { return maxEvaluations; }
{@inheritDoc}
/** {@inheritDoc} */
public int getEvaluations() { return totalEvaluations; }
{@inheritDoc}
/** {@inheritDoc} */
public ConvergenceChecker<PointVectorValuePair> getConvergenceChecker() { return optimizer.getConvergenceChecker(); }
{@inheritDoc}
/** * {@inheritDoc} */
public PointVectorValuePair optimize(int maxEval, final FUNC f, double[] target, double[] weights, double[] startPoint) { maxEvaluations = maxEval; RuntimeException lastException = null; optima = new PointVectorValuePair[starts]; totalEvaluations = 0; // Multi-start loop. for (int i = 0; i < starts; ++i) { // CHECKSTYLE: stop IllegalCatch try { optima[i] = optimizer.optimize(maxEval - totalEvaluations, f, target, weights, i == 0 ? startPoint : generator.nextVector()); } catch (ConvergenceException oe) { optima[i] = null; } catch (RuntimeException mue) { lastException = mue; optima[i] = null; } // CHECKSTYLE: resume IllegalCatch totalEvaluations += optimizer.getEvaluations(); } sortPairs(target, weights); if (optima[0] == null) { throw lastException; // cannot be null if starts >=1 } // Return the found point given the best objective function value. return optima[0]; }
Sort the optima from best to worst, followed by null elements.
Params:
  • target – Target value for the objective functions at optimum.
  • weights – Weights for the least-squares cost computation.
/** * Sort the optima from best to worst, followed by {@code null} elements. * * @param target Target value for the objective functions at optimum. * @param weights Weights for the least-squares cost computation. */
private void sortPairs(final double[] target, final double[] weights) { Arrays.sort(optima, new Comparator<PointVectorValuePair>() {
{@inheritDoc}
/** {@inheritDoc} */
public int compare(final PointVectorValuePair o1, final PointVectorValuePair o2) { if (o1 == null) { return (o2 == null) ? 0 : 1; } else if (o2 == null) { return -1; } return Double.compare(weightedResidual(o1), weightedResidual(o2)); } private double weightedResidual(final PointVectorValuePair pv) { final double[] value = pv.getValueRef(); double sum = 0; for (int i = 0; i < value.length; ++i) { final double ri = value[i] - target[i]; sum += weights[i] * ri * ri; } return sum; } }); } }