/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.optim.nonlinear.scalar.noderiv;

import java.util.Comparator;

import org.apache.commons.math3.optim.PointValuePair;
import org.apache.commons.math3.analysis.MultivariateFunction;

This class implements the Nelder-Mead simplex algorithm.
Since:3.0
/** * This class implements the Nelder-Mead simplex algorithm. * * @since 3.0 */
public class NelderMeadSimplex extends AbstractSimplex {
Default value for rho: 1.0.
/** Default value for {@link #rho}: {@value}. */
private static final double DEFAULT_RHO = 1;
Default value for khi: 2.0.
/** Default value for {@link #khi}: {@value}. */
private static final double DEFAULT_KHI = 2;
Default value for gamma: 0.5.
/** Default value for {@link #gamma}: {@value}. */
private static final double DEFAULT_GAMMA = 0.5;
Default value for sigma: 0.5.
/** Default value for {@link #sigma}: {@value}. */
private static final double DEFAULT_SIGMA = 0.5;
Reflection coefficient.
/** Reflection coefficient. */
private final double rho;
Expansion coefficient.
/** Expansion coefficient. */
private final double khi;
Contraction coefficient.
/** Contraction coefficient. */
private final double gamma;
Shrinkage coefficient.
/** Shrinkage coefficient. */
private final double sigma;
Build a Nelder-Mead simplex with default coefficients. The default coefficients are 1.0 for rho, 2.0 for khi and 0.5 for both gamma and sigma.
Params:
  • n – Dimension of the simplex.
/** * Build a Nelder-Mead simplex with default coefficients. * The default coefficients are 1.0 for rho, 2.0 for khi and 0.5 * for both gamma and sigma. * * @param n Dimension of the simplex. */
public NelderMeadSimplex(final int n) { this(n, 1d); }
Build a Nelder-Mead simplex with default coefficients. The default coefficients are 1.0 for rho, 2.0 for khi and 0.5 for both gamma and sigma.
Params:
/** * Build a Nelder-Mead simplex with default coefficients. * The default coefficients are 1.0 for rho, 2.0 for khi and 0.5 * for both gamma and sigma. * * @param n Dimension of the simplex. * @param sideLength Length of the sides of the default (hypercube) * simplex. See {@link AbstractSimplex#AbstractSimplex(int,double)}. */
public NelderMeadSimplex(final int n, double sideLength) { this(n, sideLength, DEFAULT_RHO, DEFAULT_KHI, DEFAULT_GAMMA, DEFAULT_SIGMA); }
Build a Nelder-Mead simplex with specified coefficients.
Params:
  • n – Dimension of the simplex. See AbstractSimplex(int, double).
  • sideLength – Length of the sides of the default (hypercube) simplex. See AbstractSimplex(int, double).
  • rho – Reflection coefficient.
  • khi – Expansion coefficient.
  • gamma – Contraction coefficient.
  • sigma – Shrinkage coefficient.
/** * Build a Nelder-Mead simplex with specified coefficients. * * @param n Dimension of the simplex. See * {@link AbstractSimplex#AbstractSimplex(int,double)}. * @param sideLength Length of the sides of the default (hypercube) * simplex. See {@link AbstractSimplex#AbstractSimplex(int,double)}. * @param rho Reflection coefficient. * @param khi Expansion coefficient. * @param gamma Contraction coefficient. * @param sigma Shrinkage coefficient. */
public NelderMeadSimplex(final int n, double sideLength, final double rho, final double khi, final double gamma, final double sigma) { super(n, sideLength); this.rho = rho; this.khi = khi; this.gamma = gamma; this.sigma = sigma; }
Build a Nelder-Mead simplex with specified coefficients.
Params:
  • n – Dimension of the simplex. See AbstractSimplex(int).
  • rho – Reflection coefficient.
  • khi – Expansion coefficient.
  • gamma – Contraction coefficient.
  • sigma – Shrinkage coefficient.
/** * Build a Nelder-Mead simplex with specified coefficients. * * @param n Dimension of the simplex. See * {@link AbstractSimplex#AbstractSimplex(int)}. * @param rho Reflection coefficient. * @param khi Expansion coefficient. * @param gamma Contraction coefficient. * @param sigma Shrinkage coefficient. */
public NelderMeadSimplex(final int n, final double rho, final double khi, final double gamma, final double sigma) { this(n, 1d, rho, khi, gamma, sigma); }
Build a Nelder-Mead simplex with default coefficients. The default coefficients are 1.0 for rho, 2.0 for khi and 0.5 for both gamma and sigma.
Params:
  • steps – Steps along the canonical axes representing box edges. They may be negative but not zero. See
/** * Build a Nelder-Mead simplex with default coefficients. * The default coefficients are 1.0 for rho, 2.0 for khi and 0.5 * for both gamma and sigma. * * @param steps Steps along the canonical axes representing box edges. * They may be negative but not zero. See */
public NelderMeadSimplex(final double[] steps) { this(steps, DEFAULT_RHO, DEFAULT_KHI, DEFAULT_GAMMA, DEFAULT_SIGMA); }
Build a Nelder-Mead simplex with specified coefficients.
Params:
  • steps – Steps along the canonical axes representing box edges. They may be negative but not zero. See AbstractSimplex(double[]).
  • rho – Reflection coefficient.
  • khi – Expansion coefficient.
  • gamma – Contraction coefficient.
  • sigma – Shrinkage coefficient.
Throws:
/** * Build a Nelder-Mead simplex with specified coefficients. * * @param steps Steps along the canonical axes representing box edges. * They may be negative but not zero. See * {@link AbstractSimplex#AbstractSimplex(double[])}. * @param rho Reflection coefficient. * @param khi Expansion coefficient. * @param gamma Contraction coefficient. * @param sigma Shrinkage coefficient. * @throws IllegalArgumentException if one of the steps is zero. */
public NelderMeadSimplex(final double[] steps, final double rho, final double khi, final double gamma, final double sigma) { super(steps); this.rho = rho; this.khi = khi; this.gamma = gamma; this.sigma = sigma; }
Build a Nelder-Mead simplex with default coefficients. The default coefficients are 1.0 for rho, 2.0 for khi and 0.5 for both gamma and sigma.
Params:
/** * Build a Nelder-Mead simplex with default coefficients. * The default coefficients are 1.0 for rho, 2.0 for khi and 0.5 * for both gamma and sigma. * * @param referenceSimplex Reference simplex. See * {@link AbstractSimplex#AbstractSimplex(double[][])}. */
public NelderMeadSimplex(final double[][] referenceSimplex) { this(referenceSimplex, DEFAULT_RHO, DEFAULT_KHI, DEFAULT_GAMMA, DEFAULT_SIGMA); }
Build a Nelder-Mead simplex with specified coefficients.
Params:
  • referenceSimplex – Reference simplex. See AbstractSimplex(double[][]).
  • rho – Reflection coefficient.
  • khi – Expansion coefficient.
  • gamma – Contraction coefficient.
  • sigma – Shrinkage coefficient.
Throws:
/** * Build a Nelder-Mead simplex with specified coefficients. * * @param referenceSimplex Reference simplex. See * {@link AbstractSimplex#AbstractSimplex(double[][])}. * @param rho Reflection coefficient. * @param khi Expansion coefficient. * @param gamma Contraction coefficient. * @param sigma Shrinkage coefficient. * @throws org.apache.commons.math3.exception.NotStrictlyPositiveException * if the reference simplex does not contain at least one point. * @throws org.apache.commons.math3.exception.DimensionMismatchException * if there is a dimension mismatch in the reference simplex. */
public NelderMeadSimplex(final double[][] referenceSimplex, final double rho, final double khi, final double gamma, final double sigma) { super(referenceSimplex); this.rho = rho; this.khi = khi; this.gamma = gamma; this.sigma = sigma; }
{@inheritDoc}
/** {@inheritDoc} */
@Override public void iterate(final MultivariateFunction evaluationFunction, final Comparator<PointValuePair> comparator) { // The simplex has n + 1 points if dimension is n. final int n = getDimension(); // Interesting values. final PointValuePair best = getPoint(0); final PointValuePair secondBest = getPoint(n - 1); final PointValuePair worst = getPoint(n); final double[] xWorst = worst.getPointRef(); // Compute the centroid of the best vertices (dismissing the worst // point at index n). final double[] centroid = new double[n]; for (int i = 0; i < n; i++) { final double[] x = getPoint(i).getPointRef(); for (int j = 0; j < n; j++) { centroid[j] += x[j]; } } final double scaling = 1.0 / n; for (int j = 0; j < n; j++) { centroid[j] *= scaling; } // compute the reflection point final double[] xR = new double[n]; for (int j = 0; j < n; j++) { xR[j] = centroid[j] + rho * (centroid[j] - xWorst[j]); } final PointValuePair reflected = new PointValuePair(xR, evaluationFunction.value(xR), false); if (comparator.compare(best, reflected) <= 0 && comparator.compare(reflected, secondBest) < 0) { // Accept the reflected point. replaceWorstPoint(reflected, comparator); } else if (comparator.compare(reflected, best) < 0) { // Compute the expansion point. final double[] xE = new double[n]; for (int j = 0; j < n; j++) { xE[j] = centroid[j] + khi * (xR[j] - centroid[j]); } final PointValuePair expanded = new PointValuePair(xE, evaluationFunction.value(xE), false); if (comparator.compare(expanded, reflected) < 0) { // Accept the expansion point. replaceWorstPoint(expanded, comparator); } else { // Accept the reflected point. replaceWorstPoint(reflected, comparator); } } else { if (comparator.compare(reflected, worst) < 0) { // Perform an outside contraction. final double[] xC = new double[n]; for (int j = 0; j < n; j++) { xC[j] = centroid[j] + gamma * (xR[j] - centroid[j]); } final PointValuePair outContracted = new PointValuePair(xC, evaluationFunction.value(xC), false); if (comparator.compare(outContracted, reflected) <= 0) { // Accept the contraction point. replaceWorstPoint(outContracted, comparator); return; } } else { // Perform an inside contraction. final double[] xC = new double[n]; for (int j = 0; j < n; j++) { xC[j] = centroid[j] - gamma * (centroid[j] - xWorst[j]); } final PointValuePair inContracted = new PointValuePair(xC, evaluationFunction.value(xC), false); if (comparator.compare(inContracted, worst) < 0) { // Accept the contraction point. replaceWorstPoint(inContracted, comparator); return; } } // Perform a shrink. final double[] xSmallest = getPoint(0).getPointRef(); for (int i = 1; i <= n; i++) { final double[] x = getPoint(i).getPoint(); for (int j = 0; j < n; j++) { x[j] = xSmallest[j] + sigma * (x[j] - xSmallest[j]); } setPoint(i, new PointValuePair(x, Double.NaN, false)); } evaluate(evaluationFunction, comparator); } } }