/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.optim.nonlinear.scalar.noderiv;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.NotPositiveException;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.OutOfRangeException;
import org.apache.commons.math3.exception.TooManyEvaluationsException;
import org.apache.commons.math3.linear.Array2DRowRealMatrix;
import org.apache.commons.math3.linear.EigenDecomposition;
import org.apache.commons.math3.linear.MatrixUtils;
import org.apache.commons.math3.linear.RealMatrix;
import org.apache.commons.math3.optim.ConvergenceChecker;
import org.apache.commons.math3.optim.OptimizationData;
import org.apache.commons.math3.optim.nonlinear.scalar.GoalType;
import org.apache.commons.math3.optim.PointValuePair;
import org.apache.commons.math3.optim.nonlinear.scalar.MultivariateOptimizer;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.MathArrays;
An implementation of the active Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
for non-linear, non-convex, non-smooth, global function minimization.
The CMA-Evolution Strategy (CMA-ES) is a reliable stochastic optimization method
which should be applied if derivative-based methods, e.g. quasi-Newton BFGS or
conjugate gradient, fail due to a rugged search landscape (e.g. noise, local
optima, outlier, etc.) of the objective function. Like a
quasi-Newton method, the CMA-ES learns and applies a variable metric
on the underlying search space. Unlike a quasi-Newton method, the
CMA-ES neither estimates nor uses gradients, making it considerably more
reliable in terms of finding a good, or even close to optimal, solution.
In general, on smooth objective functions the CMA-ES is roughly ten times
slower than BFGS (counting objective function evaluations, no gradients provided).
For up to N=10 variables also the derivative-free simplex
direct search method (Nelder and Mead) can be faster, but it is
far less reliable than CMA-ES.
The CMA-ES is particularly well suited for non-separable
and/or badly conditioned problems. To observe the advantage of CMA compared
to a conventional evolution strategy, it will usually take about
30 N function evaluations. On difficult problems the complete
optimization (a single run) is expected to take roughly between
30 N and 300 N2
function evaluations.
This implementation is translated and adapted from the Matlab version of the CMA-ES algorithm as implemented in module cmaes.m
version 3.51.
For more information, please refer to the following links:
Since: 3.0
/**
* An implementation of the active Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
* for non-linear, non-convex, non-smooth, global function minimization.
* <p>
* The CMA-Evolution Strategy (CMA-ES) is a reliable stochastic optimization method
* which should be applied if derivative-based methods, e.g. quasi-Newton BFGS or
* conjugate gradient, fail due to a rugged search landscape (e.g. noise, local
* optima, outlier, etc.) of the objective function. Like a
* quasi-Newton method, the CMA-ES learns and applies a variable metric
* on the underlying search space. Unlike a quasi-Newton method, the
* CMA-ES neither estimates nor uses gradients, making it considerably more
* reliable in terms of finding a good, or even close to optimal, solution.
* <p>
* In general, on smooth objective functions the CMA-ES is roughly ten times
* slower than BFGS (counting objective function evaluations, no gradients provided).
* For up to <math>N=10</math> variables also the derivative-free simplex
* direct search method (Nelder and Mead) can be faster, but it is
* far less reliable than CMA-ES.
* <p>
* The CMA-ES is particularly well suited for non-separable
* and/or badly conditioned problems. To observe the advantage of CMA compared
* to a conventional evolution strategy, it will usually take about
* <math>30 N</math> function evaluations. On difficult problems the complete
* optimization (a single run) is expected to take <em>roughly</em> between
* <math>30 N</math> and <math>300 N<sup>2</sup></math>
* function evaluations.
* <p>
* This implementation is translated and adapted from the Matlab version
* of the CMA-ES algorithm as implemented in module {@code cmaes.m} version 3.51.
* <p>
* For more information, please refer to the following links:
* <ul>
* <li><a href="http://www.lri.fr/~hansen/cmaes.m">Matlab code</a></li>
* <li><a href="http://www.lri.fr/~hansen/cmaesintro.html">Introduction to CMA-ES</a></li>
* <li><a href="http://en.wikipedia.org/wiki/CMA-ES">Wikipedia</a></li>
* </ul>
*
* @since 3.0
*/
public class CMAESOptimizer
extends MultivariateOptimizer {
// global search parameters
Population size, offspring number. The primary strategy parameter to play
with, which can be increased from its default value. Increasing the
population size improves global search properties in exchange to speed.
Speed decreases, as a rule, at most linearly with increasing population
size. It is advisable to begin with the default small population size.
/**
* Population size, offspring number. The primary strategy parameter to play
* with, which can be increased from its default value. Increasing the
* population size improves global search properties in exchange to speed.
* Speed decreases, as a rule, at most linearly with increasing population
* size. It is advisable to begin with the default small population size.
*/
private int lambda; // population size
Covariance update mechanism, default is active CMA. isActiveCMA = true
turns on "active CMA" with a negative update of the covariance matrix and
checks for positive definiteness. OPTS.CMA.active = 2 does not check for
pos. def. and is numerically faster. Active CMA usually speeds up the
adaptation.
/**
* Covariance update mechanism, default is active CMA. isActiveCMA = true
* turns on "active CMA" with a negative update of the covariance matrix and
* checks for positive definiteness. OPTS.CMA.active = 2 does not check for
* pos. def. and is numerically faster. Active CMA usually speeds up the
* adaptation.
*/
private final boolean isActiveCMA;
Determines how often a new random offspring is generated in case it is
not feasible / beyond the defined limits, default is 0.
/**
* Determines how often a new random offspring is generated in case it is
* not feasible / beyond the defined limits, default is 0.
*/
private final int checkFeasableCount;
See Also: - Sigma
/**
* @see Sigma
*/
private double[] inputSigma;
Number of objective variables/problem dimension /** Number of objective variables/problem dimension */
private int dimension;
Defines the number of initial iterations, where the covariance matrix
remains diagonal and the algorithm has internally linear time complexity.
diagonalOnly = 1 means keeping the covariance matrix always diagonal and
this setting also exhibits linear space complexity. This can be
particularly useful for dimension > 100.
See Also:
/**
* Defines the number of initial iterations, where the covariance matrix
* remains diagonal and the algorithm has internally linear time complexity.
* diagonalOnly = 1 means keeping the covariance matrix always diagonal and
* this setting also exhibits linear space complexity. This can be
* particularly useful for dimension > 100.
* @see <a href="http://hal.archives-ouvertes.fr/inria-00287367/en">A Simple Modification in CMA-ES</a>
*/
private int diagonalOnly;
Number of objective variables/problem dimension /** Number of objective variables/problem dimension */
private boolean isMinimize = true;
Indicates whether statistic data is collected. /** Indicates whether statistic data is collected. */
private final boolean generateStatistics;
// termination criteria
Maximal number of iterations allowed. /** Maximal number of iterations allowed. */
private final int maxIterations;
Limit for fitness value. /** Limit for fitness value. */
private final double stopFitness;
Stop if x-changes larger stopTolUpX. /** Stop if x-changes larger stopTolUpX. */
private double stopTolUpX;
Stop if x-change smaller stopTolX. /** Stop if x-change smaller stopTolX. */
private double stopTolX;
Stop if fun-changes smaller stopTolFun. /** Stop if fun-changes smaller stopTolFun. */
private double stopTolFun;
Stop if back fun-changes smaller stopTolHistFun. /** Stop if back fun-changes smaller stopTolHistFun. */
private double stopTolHistFun;
// selection strategy parameters
Number of parents/points for recombination. /** Number of parents/points for recombination. */
private int mu; //
log(mu + 0.5), stored for efficiency. /** log(mu + 0.5), stored for efficiency. */
private double logMu2;
Array for weighted recombination. /** Array for weighted recombination. */
private RealMatrix weights;
Variance-effectiveness of sum w_i x_i. /** Variance-effectiveness of sum w_i x_i. */
private double mueff; //
// dynamic strategy parameters and constants
Overall standard deviation - search volume. /** Overall standard deviation - search volume. */
private double sigma;
Cumulation constant. /** Cumulation constant. */
private double cc;
Cumulation constant for step-size. /** Cumulation constant for step-size. */
private double cs;
Damping for step-size. /** Damping for step-size. */
private double damps;
Learning rate for rank-one update. /** Learning rate for rank-one update. */
private double ccov1;
Learning rate for rank-mu update' /** Learning rate for rank-mu update' */
private double ccovmu;
Expectation of ||N(0,I)|| == norm(randn(N,1)). /** Expectation of ||N(0,I)|| == norm(randn(N,1)). */
private double chiN;
Learning rate for rank-one update - diagonalOnly /** Learning rate for rank-one update - diagonalOnly */
private double ccov1Sep;
Learning rate for rank-mu update - diagonalOnly /** Learning rate for rank-mu update - diagonalOnly */
private double ccovmuSep;
// CMA internal values - updated each generation
Objective variables. /** Objective variables. */
private RealMatrix xmean;
Evolution path. /** Evolution path. */
private RealMatrix pc;
Evolution path for sigma. /** Evolution path for sigma. */
private RealMatrix ps;
Norm of ps, stored for efficiency. /** Norm of ps, stored for efficiency. */
private double normps;
Coordinate system. /** Coordinate system. */
private RealMatrix B;
Scaling. /** Scaling. */
private RealMatrix D;
B*D, stored for efficiency. /** B*D, stored for efficiency. */
private RealMatrix BD;
Diagonal of sqrt(D), stored for efficiency. /** Diagonal of sqrt(D), stored for efficiency. */
private RealMatrix diagD;
Covariance matrix. /** Covariance matrix. */
private RealMatrix C;
Diagonal of C, used for diagonalOnly. /** Diagonal of C, used for diagonalOnly. */
private RealMatrix diagC;
Number of iterations already performed. /** Number of iterations already performed. */
private int iterations;
History queue of best values. /** History queue of best values. */
private double[] fitnessHistory;
Size of history queue of best values. /** Size of history queue of best values. */
private int historySize;
Random generator. /** Random generator. */
private final RandomGenerator random;
History of sigma values. /** History of sigma values. */
private final List<Double> statisticsSigmaHistory = new ArrayList<Double>();
History of mean matrix. /** History of mean matrix. */
private final List<RealMatrix> statisticsMeanHistory = new ArrayList<RealMatrix>();
History of fitness values. /** History of fitness values. */
private final List<Double> statisticsFitnessHistory = new ArrayList<Double>();
History of D matrix. /** History of D matrix. */
private final List<RealMatrix> statisticsDHistory = new ArrayList<RealMatrix>();
Params: - maxIterations – Maximal number of iterations.
- stopFitness – Whether to stop if objective function value is smaller than
stopFitness
. - isActiveCMA – Chooses the covariance matrix update method.
- diagonalOnly – Number of initial iterations, where the covariance matrix
remains diagonal.
- checkFeasableCount – Determines how often new random objective variables are
generated in case they are out of bounds.
- random – Random generator.
- generateStatistics – Whether statistic data is collected.
- checker – Convergence checker.
Since: 3.1
/**
* @param maxIterations Maximal number of iterations.
* @param stopFitness Whether to stop if objective function value is smaller than
* {@code stopFitness}.
* @param isActiveCMA Chooses the covariance matrix update method.
* @param diagonalOnly Number of initial iterations, where the covariance matrix
* remains diagonal.
* @param checkFeasableCount Determines how often new random objective variables are
* generated in case they are out of bounds.
* @param random Random generator.
* @param generateStatistics Whether statistic data is collected.
* @param checker Convergence checker.
*
* @since 3.1
*/
public CMAESOptimizer(int maxIterations,
double stopFitness,
boolean isActiveCMA,
int diagonalOnly,
int checkFeasableCount,
RandomGenerator random,
boolean generateStatistics,
ConvergenceChecker<PointValuePair> checker) {
super(checker);
this.maxIterations = maxIterations;
this.stopFitness = stopFitness;
this.isActiveCMA = isActiveCMA;
this.diagonalOnly = diagonalOnly;
this.checkFeasableCount = checkFeasableCount;
this.random = random;
this.generateStatistics = generateStatistics;
}
Returns: History of sigma values.
/**
* @return History of sigma values.
*/
public List<Double> getStatisticsSigmaHistory() {
return statisticsSigmaHistory;
}
Returns: History of mean matrix.
/**
* @return History of mean matrix.
*/
public List<RealMatrix> getStatisticsMeanHistory() {
return statisticsMeanHistory;
}
Returns: History of fitness values.
/**
* @return History of fitness values.
*/
public List<Double> getStatisticsFitnessHistory() {
return statisticsFitnessHistory;
}
Returns: History of D matrix.
/**
* @return History of D matrix.
*/
public List<RealMatrix> getStatisticsDHistory() {
return statisticsDHistory;
}
Input sigma values.
They define the initial coordinate-wise standard deviations for
sampling new search points around the initial guess.
It is suggested to set them to the estimated distance from the
initial to the desired optimum.
Small values induce the search to be more local (and very small
values are more likely to find a local optimum close to the initial
guess).
Too small values might however lead to early termination.
/**
* Input sigma values.
* They define the initial coordinate-wise standard deviations for
* sampling new search points around the initial guess.
* It is suggested to set them to the estimated distance from the
* initial to the desired optimum.
* Small values induce the search to be more local (and very small
* values are more likely to find a local optimum close to the initial
* guess).
* Too small values might however lead to early termination.
*/
public static class Sigma implements OptimizationData {
Sigma values. /** Sigma values. */
private final double[] sigma;
Params: - s – Sigma values.
Throws: - NotPositiveException – if any of the array entries is smaller
than zero.
/**
* @param s Sigma values.
* @throws NotPositiveException if any of the array entries is smaller
* than zero.
*/
public Sigma(double[] s)
throws NotPositiveException {
for (int i = 0; i < s.length; i++) {
if (s[i] < 0) {
throw new NotPositiveException(s[i]);
}
}
sigma = s.clone();
}
Returns: the sigma values.
/**
* @return the sigma values.
*/
public double[] getSigma() {
return sigma.clone();
}
}
Population size. The number of offspring is the primary strategy parameter. In the absence of better clues, a good default could be an integer close to 4 + 3 ln(n)
, where n
is the number of optimized parameters. Increasing the population size improves global search properties at the expense of speed (which in general decreases at most linearly with increasing population size). /**
* Population size.
* The number of offspring is the primary strategy parameter.
* In the absence of better clues, a good default could be an
* integer close to {@code 4 + 3 ln(n)}, where {@code n} is the
* number of optimized parameters.
* Increasing the population size improves global search properties
* at the expense of speed (which in general decreases at most
* linearly with increasing population size).
*/
public static class PopulationSize implements OptimizationData {
Population size. /** Population size. */
private final int lambda;
Params: - size – Population size.
Throws: - NotStrictlyPositiveException – if
size <= 0
.
/**
* @param size Population size.
* @throws NotStrictlyPositiveException if {@code size <= 0}.
*/
public PopulationSize(int size)
throws NotStrictlyPositiveException {
if (size <= 0) {
throw new NotStrictlyPositiveException(size);
}
lambda = size;
}
Returns: the population size.
/**
* @return the population size.
*/
public int getPopulationSize() {
return lambda;
}
}
{@inheritDoc}
Params: - optData – Optimization data. In addition to those documented in
MultivariateOptimizer
, this method will register the following data:
Throws: - TooManyEvaluationsException – if the maximal number of
evaluations is exceeded.
- DimensionMismatchException – if the initial guess, target, and weight
arguments have inconsistent dimensions.
Returns: {@inheritDoc}
/**
* {@inheritDoc}
*
* @param optData Optimization data. In addition to those documented in
* {@link MultivariateOptimizer#parseOptimizationData(OptimizationData[])
* MultivariateOptimizer}, this method will register the following data:
* <ul>
* <li>{@link Sigma}</li>
* <li>{@link PopulationSize}</li>
* </ul>
* @return {@inheritDoc}
* @throws TooManyEvaluationsException if the maximal number of
* evaluations is exceeded.
* @throws DimensionMismatchException if the initial guess, target, and weight
* arguments have inconsistent dimensions.
*/
@Override
public PointValuePair optimize(OptimizationData... optData)
throws TooManyEvaluationsException,
DimensionMismatchException {
// Set up base class and perform computation.
return super.optimize(optData);
}
{@inheritDoc} /** {@inheritDoc} */
@Override
protected PointValuePair doOptimize() {
// -------------------- Initialization --------------------------------
isMinimize = getGoalType().equals(GoalType.MINIMIZE);
final FitnessFunction fitfun = new FitnessFunction();
final double[] guess = getStartPoint();
// number of objective variables/problem dimension
dimension = guess.length;
initializeCMA(guess);
iterations = 0;
ValuePenaltyPair valuePenalty = fitfun.value(guess);
double bestValue = valuePenalty.value+valuePenalty.penalty;
push(fitnessHistory, bestValue);
PointValuePair optimum
= new PointValuePair(getStartPoint(),
isMinimize ? bestValue : -bestValue);
PointValuePair lastResult = null;
// -------------------- Generation Loop --------------------------------
generationLoop:
for (iterations = 1; iterations <= maxIterations; iterations++) {
incrementIterationCount();
// Generate and evaluate lambda offspring
final RealMatrix arz = randn1(dimension, lambda);
final RealMatrix arx = zeros(dimension, lambda);
final double[] fitness = new double[lambda];
final ValuePenaltyPair[] valuePenaltyPairs = new ValuePenaltyPair[lambda];
// generate random offspring
for (int k = 0; k < lambda; k++) {
RealMatrix arxk = null;
for (int i = 0; i < checkFeasableCount + 1; i++) {
if (diagonalOnly <= 0) {
arxk = xmean.add(BD.multiply(arz.getColumnMatrix(k))
.scalarMultiply(sigma)); // m + sig * Normal(0,C)
} else {
arxk = xmean.add(times(diagD,arz.getColumnMatrix(k))
.scalarMultiply(sigma));
}
if (i >= checkFeasableCount ||
fitfun.isFeasible(arxk.getColumn(0))) {
break;
}
// regenerate random arguments for row
arz.setColumn(k, randn(dimension));
}
copyColumn(arxk, 0, arx, k);
try {
valuePenaltyPairs[k] = fitfun.value(arx.getColumn(k)); // compute fitness
} catch (TooManyEvaluationsException e) {
break generationLoop;
}
}
// Compute fitnesses by adding value and penalty after scaling by value range.
double valueRange = valueRange(valuePenaltyPairs);
for (int iValue=0;iValue<valuePenaltyPairs.length;iValue++) {
fitness[iValue] = valuePenaltyPairs[iValue].value + valuePenaltyPairs[iValue].penalty*valueRange;
}
// Sort by fitness and compute weighted mean into xmean
final int[] arindex = sortedIndices(fitness);
// Calculate new xmean, this is selection and recombination
final RealMatrix xold = xmean; // for speed up of Eq. (2) and (3)
final RealMatrix bestArx = selectColumns(arx, MathArrays.copyOf(arindex, mu));
xmean = bestArx.multiply(weights);
final RealMatrix bestArz = selectColumns(arz, MathArrays.copyOf(arindex, mu));
final RealMatrix zmean = bestArz.multiply(weights);
final boolean hsig = updateEvolutionPaths(zmean, xold);
if (diagonalOnly <= 0) {
updateCovariance(hsig, bestArx, arz, arindex, xold);
} else {
updateCovarianceDiagonalOnly(hsig, bestArz);
}
// Adapt step size sigma - Eq. (5)
sigma *= FastMath.exp(FastMath.min(1, (normps/chiN - 1) * cs / damps));
final double bestFitness = fitness[arindex[0]];
final double worstFitness = fitness[arindex[arindex.length - 1]];
if (bestValue > bestFitness) {
bestValue = bestFitness;
lastResult = optimum;
optimum = new PointValuePair(fitfun.repair(bestArx.getColumn(0)),
isMinimize ? bestFitness : -bestFitness);
if (getConvergenceChecker() != null && lastResult != null &&
getConvergenceChecker().converged(iterations, optimum, lastResult)) {
break generationLoop;
}
}
// handle termination criteria
// Break, if fitness is good enough
if (stopFitness != 0 && bestFitness < (isMinimize ? stopFitness : -stopFitness)) {
break generationLoop;
}
final double[] sqrtDiagC = sqrt(diagC).getColumn(0);
final double[] pcCol = pc.getColumn(0);
for (int i = 0; i < dimension; i++) {
if (sigma * FastMath.max(FastMath.abs(pcCol[i]), sqrtDiagC[i]) > stopTolX) {
break;
}
if (i >= dimension - 1) {
break generationLoop;
}
}
for (int i = 0; i < dimension; i++) {
if (sigma * sqrtDiagC[i] > stopTolUpX) {
break generationLoop;
}
}
final double historyBest = min(fitnessHistory);
final double historyWorst = max(fitnessHistory);
if (iterations > 2 &&
FastMath.max(historyWorst, worstFitness) -
FastMath.min(historyBest, bestFitness) < stopTolFun) {
break generationLoop;
}
if (iterations > fitnessHistory.length &&
historyWorst - historyBest < stopTolHistFun) {
break generationLoop;
}
// condition number of the covariance matrix exceeds 1e14
if (max(diagD) / min(diagD) > 1e7) {
break generationLoop;
}
// user defined termination
if (getConvergenceChecker() != null) {
final PointValuePair current
= new PointValuePair(bestArx.getColumn(0),
isMinimize ? bestFitness : -bestFitness);
if (lastResult != null &&
getConvergenceChecker().converged(iterations, current, lastResult)) {
break generationLoop;
}
lastResult = current;
}
// Adjust step size in case of equal function values (flat fitness)
if (bestValue == fitness[arindex[(int)(0.1+lambda/4.)]]) {
sigma *= FastMath.exp(0.2 + cs / damps);
}
if (iterations > 2 && FastMath.max(historyWorst, bestFitness) -
FastMath.min(historyBest, bestFitness) == 0) {
sigma *= FastMath.exp(0.2 + cs / damps);
}
// store best in history
push(fitnessHistory,bestFitness);
if (generateStatistics) {
statisticsSigmaHistory.add(sigma);
statisticsFitnessHistory.add(bestFitness);
statisticsMeanHistory.add(xmean.transpose());
statisticsDHistory.add(diagD.transpose().scalarMultiply(1E5));
}
}
return optimum;
}
Scans the list of (required and optional) optimization data that
characterize the problem.
Params: - optData – Optimization data. The following data will be looked for:
/**
* Scans the list of (required and optional) optimization data that
* characterize the problem.
*
* @param optData Optimization data. The following data will be looked for:
* <ul>
* <li>{@link Sigma}</li>
* <li>{@link PopulationSize}</li>
* </ul>
*/
@Override
protected void parseOptimizationData(OptimizationData... optData) {
// Allow base class to register its own data.
super.parseOptimizationData(optData);
// The existing values (as set by the previous call) are reused if
// not provided in the argument list.
for (OptimizationData data : optData) {
if (data instanceof Sigma) {
inputSigma = ((Sigma) data).getSigma();
continue;
}
if (data instanceof PopulationSize) {
lambda = ((PopulationSize) data).getPopulationSize();
continue;
}
}
checkParameters();
}
Checks dimensions and values of boundaries and inputSigma if defined.
/**
* Checks dimensions and values of boundaries and inputSigma if defined.
*/
private void checkParameters() {
final double[] init = getStartPoint();
final double[] lB = getLowerBound();
final double[] uB = getUpperBound();
if (inputSigma != null) {
if (inputSigma.length != init.length) {
throw new DimensionMismatchException(inputSigma.length, init.length);
}
for (int i = 0; i < init.length; i++) {
if (inputSigma[i] > uB[i] - lB[i]) {
throw new OutOfRangeException(inputSigma[i], 0, uB[i] - lB[i]);
}
}
}
}
Initialization of the dynamic search parameters
Params: - guess – Initial guess for the arguments of the fitness function.
/**
* Initialization of the dynamic search parameters
*
* @param guess Initial guess for the arguments of the fitness function.
*/
private void initializeCMA(double[] guess) {
if (lambda <= 0) {
throw new NotStrictlyPositiveException(lambda);
}
// initialize sigma
final double[][] sigmaArray = new double[guess.length][1];
for (int i = 0; i < guess.length; i++) {
sigmaArray[i][0] = inputSigma[i];
}
final RealMatrix insigma = new Array2DRowRealMatrix(sigmaArray, false);
sigma = max(insigma); // overall standard deviation
// initialize termination criteria
stopTolUpX = 1e3 * max(insigma);
stopTolX = 1e-11 * max(insigma);
stopTolFun = 1e-12;
stopTolHistFun = 1e-13;
// initialize selection strategy parameters
mu = lambda / 2; // number of parents/points for recombination
logMu2 = FastMath.log(mu + 0.5);
weights = log(sequence(1, mu, 1)).scalarMultiply(-1).scalarAdd(logMu2);
double sumw = 0;
double sumwq = 0;
for (int i = 0; i < mu; i++) {
double w = weights.getEntry(i, 0);
sumw += w;
sumwq += w * w;
}
weights = weights.scalarMultiply(1 / sumw);
mueff = sumw * sumw / sumwq; // variance-effectiveness of sum w_i x_i
// initialize dynamic strategy parameters and constants
cc = (4 + mueff / dimension) /
(dimension + 4 + 2 * mueff / dimension);
cs = (mueff + 2) / (dimension + mueff + 3.);
damps = (1 + 2 * FastMath.max(0, FastMath.sqrt((mueff - 1) /
(dimension + 1)) - 1)) *
FastMath.max(0.3,
1 - dimension / (1e-6 + maxIterations)) + cs; // minor increment
ccov1 = 2 / ((dimension + 1.3) * (dimension + 1.3) + mueff);
ccovmu = FastMath.min(1 - ccov1, 2 * (mueff - 2 + 1 / mueff) /
((dimension + 2) * (dimension + 2) + mueff));
ccov1Sep = FastMath.min(1, ccov1 * (dimension + 1.5) / 3);
ccovmuSep = FastMath.min(1 - ccov1, ccovmu * (dimension + 1.5) / 3);
chiN = FastMath.sqrt(dimension) *
(1 - 1 / ((double) 4 * dimension) + 1 / ((double) 21 * dimension * dimension));
// intialize CMA internal values - updated each generation
xmean = MatrixUtils.createColumnRealMatrix(guess); // objective variables
diagD = insigma.scalarMultiply(1 / sigma);
diagC = square(diagD);
pc = zeros(dimension, 1); // evolution paths for C and sigma
ps = zeros(dimension, 1); // B defines the coordinate system
normps = ps.getFrobeniusNorm();
B = eye(dimension, dimension);
D = ones(dimension, 1); // diagonal D defines the scaling
BD = times(B, repmat(diagD.transpose(), dimension, 1));
C = B.multiply(diag(square(D)).multiply(B.transpose())); // covariance
historySize = 10 + (int) (3 * 10 * dimension / (double) lambda);
fitnessHistory = new double[historySize]; // history of fitness values
for (int i = 0; i < historySize; i++) {
fitnessHistory[i] = Double.MAX_VALUE;
}
}
Update of the evolution paths ps and pc.
Params: - zmean – Weighted row matrix of the gaussian random numbers generating
the current offspring.
- xold – xmean matrix of the previous generation.
Returns: hsig flag indicating a small correction.
/**
* Update of the evolution paths ps and pc.
*
* @param zmean Weighted row matrix of the gaussian random numbers generating
* the current offspring.
* @param xold xmean matrix of the previous generation.
* @return hsig flag indicating a small correction.
*/
private boolean updateEvolutionPaths(RealMatrix zmean, RealMatrix xold) {
ps = ps.scalarMultiply(1 - cs).add(
B.multiply(zmean).scalarMultiply(
FastMath.sqrt(cs * (2 - cs) * mueff)));
normps = ps.getFrobeniusNorm();
final boolean hsig = normps /
FastMath.sqrt(1 - FastMath.pow(1 - cs, 2 * iterations)) /
chiN < 1.4 + 2 / ((double) dimension + 1);
pc = pc.scalarMultiply(1 - cc);
if (hsig) {
pc = pc.add(xmean.subtract(xold).scalarMultiply(FastMath.sqrt(cc * (2 - cc) * mueff) / sigma));
}
return hsig;
}
Update of the covariance matrix C for diagonalOnly > 0
Params: - hsig – Flag indicating a small correction.
- bestArz – Fitness-sorted matrix of the gaussian random values of the
current offspring.
/**
* Update of the covariance matrix C for diagonalOnly > 0
*
* @param hsig Flag indicating a small correction.
* @param bestArz Fitness-sorted matrix of the gaussian random values of the
* current offspring.
*/
private void updateCovarianceDiagonalOnly(boolean hsig,
final RealMatrix bestArz) {
// minor correction if hsig==false
double oldFac = hsig ? 0 : ccov1Sep * cc * (2 - cc);
oldFac += 1 - ccov1Sep - ccovmuSep;
diagC = diagC.scalarMultiply(oldFac) // regard old matrix
.add(square(pc).scalarMultiply(ccov1Sep)) // plus rank one update
.add((times(diagC, square(bestArz).multiply(weights))) // plus rank mu update
.scalarMultiply(ccovmuSep));
diagD = sqrt(diagC); // replaces eig(C)
if (diagonalOnly > 1 &&
iterations > diagonalOnly) {
// full covariance matrix from now on
diagonalOnly = 0;
B = eye(dimension, dimension);
BD = diag(diagD);
C = diag(diagC);
}
}
Update of the covariance matrix C.
Params: - hsig – Flag indicating a small correction.
- bestArx – Fitness-sorted matrix of the argument vectors producing the
current offspring.
- arz – Unsorted matrix containing the gaussian random values of the
current offspring.
- arindex – Indices indicating the fitness-order of the current offspring.
- xold – xmean matrix of the previous generation.
/**
* Update of the covariance matrix C.
*
* @param hsig Flag indicating a small correction.
* @param bestArx Fitness-sorted matrix of the argument vectors producing the
* current offspring.
* @param arz Unsorted matrix containing the gaussian random values of the
* current offspring.
* @param arindex Indices indicating the fitness-order of the current offspring.
* @param xold xmean matrix of the previous generation.
*/
private void updateCovariance(boolean hsig, final RealMatrix bestArx,
final RealMatrix arz, final int[] arindex,
final RealMatrix xold) {
double negccov = 0;
if (ccov1 + ccovmu > 0) {
final RealMatrix arpos = bestArx.subtract(repmat(xold, 1, mu))
.scalarMultiply(1 / sigma); // mu difference vectors
final RealMatrix roneu = pc.multiply(pc.transpose())
.scalarMultiply(ccov1); // rank one update
// minor correction if hsig==false
double oldFac = hsig ? 0 : ccov1 * cc * (2 - cc);
oldFac += 1 - ccov1 - ccovmu;
if (isActiveCMA) {
// Adapt covariance matrix C active CMA
negccov = (1 - ccovmu) * 0.25 * mueff /
(FastMath.pow(dimension + 2, 1.5) + 2 * mueff);
// keep at least 0.66 in all directions, small popsize are most
// critical
final double negminresidualvariance = 0.66;
// where to make up for the variance loss
final double negalphaold = 0.5;
// prepare vectors, compute negative updating matrix Cneg
final int[] arReverseIndex = reverse(arindex);
RealMatrix arzneg = selectColumns(arz, MathArrays.copyOf(arReverseIndex, mu));
RealMatrix arnorms = sqrt(sumRows(square(arzneg)));
final int[] idxnorms = sortedIndices(arnorms.getRow(0));
final RealMatrix arnormsSorted = selectColumns(arnorms, idxnorms);
final int[] idxReverse = reverse(idxnorms);
final RealMatrix arnormsReverse = selectColumns(arnorms, idxReverse);
arnorms = divide(arnormsReverse, arnormsSorted);
final int[] idxInv = inverse(idxnorms);
final RealMatrix arnormsInv = selectColumns(arnorms, idxInv);
// check and set learning rate negccov
final double negcovMax = (1 - negminresidualvariance) /
square(arnormsInv).multiply(weights).getEntry(0, 0);
if (negccov > negcovMax) {
negccov = negcovMax;
}
arzneg = times(arzneg, repmat(arnormsInv, dimension, 1));
final RealMatrix artmp = BD.multiply(arzneg);
final RealMatrix Cneg = artmp.multiply(diag(weights)).multiply(artmp.transpose());
oldFac += negalphaold * negccov;
C = C.scalarMultiply(oldFac)
.add(roneu) // regard old matrix
.add(arpos.scalarMultiply( // plus rank one update
ccovmu + (1 - negalphaold) * negccov) // plus rank mu update
.multiply(times(repmat(weights, 1, dimension),
arpos.transpose())))
.subtract(Cneg.scalarMultiply(negccov));
} else {
// Adapt covariance matrix C - nonactive
C = C.scalarMultiply(oldFac) // regard old matrix
.add(roneu) // plus rank one update
.add(arpos.scalarMultiply(ccovmu) // plus rank mu update
.multiply(times(repmat(weights, 1, dimension),
arpos.transpose())));
}
}
updateBD(negccov);
}
Update B and D from C.
Params: - negccov – Negative covariance factor.
/**
* Update B and D from C.
*
* @param negccov Negative covariance factor.
*/
private void updateBD(double negccov) {
if (ccov1 + ccovmu + negccov > 0 &&
(iterations % 1. / (ccov1 + ccovmu + negccov) / dimension / 10.) < 1) {
// to achieve O(N^2)
C = triu(C, 0).add(triu(C, 1).transpose());
// enforce symmetry to prevent complex numbers
final EigenDecomposition eig = new EigenDecomposition(C);
B = eig.getV(); // eigen decomposition, B==normalized eigenvectors
D = eig.getD();
diagD = diag(D);
if (min(diagD) <= 0) {
for (int i = 0; i < dimension; i++) {
if (diagD.getEntry(i, 0) < 0) {
diagD.setEntry(i, 0, 0);
}
}
final double tfac = max(diagD) / 1e14;
C = C.add(eye(dimension, dimension).scalarMultiply(tfac));
diagD = diagD.add(ones(dimension, 1).scalarMultiply(tfac));
}
if (max(diagD) > 1e14 * min(diagD)) {
final double tfac = max(diagD) / 1e14 - min(diagD);
C = C.add(eye(dimension, dimension).scalarMultiply(tfac));
diagD = diagD.add(ones(dimension, 1).scalarMultiply(tfac));
}
diagC = diag(C);
diagD = sqrt(diagD); // D contains standard deviations now
BD = times(B, repmat(diagD.transpose(), dimension, 1)); // O(n^2)
}
}
Pushes the current best fitness value in a history queue.
Params: - vals – History queue.
- val – Current best fitness value.
/**
* Pushes the current best fitness value in a history queue.
*
* @param vals History queue.
* @param val Current best fitness value.
*/
private static void push(double[] vals, double val) {
for (int i = vals.length-1; i > 0; i--) {
vals[i] = vals[i-1];
}
vals[0] = val;
}
Sorts fitness values.
Params: - doubles – Array of values to be sorted.
Returns: a sorted array of indices pointing into doubles.
/**
* Sorts fitness values.
*
* @param doubles Array of values to be sorted.
* @return a sorted array of indices pointing into doubles.
*/
private int[] sortedIndices(final double[] doubles) {
final DoubleIndex[] dis = new DoubleIndex[doubles.length];
for (int i = 0; i < doubles.length; i++) {
dis[i] = new DoubleIndex(doubles[i], i);
}
Arrays.sort(dis);
final int[] indices = new int[doubles.length];
for (int i = 0; i < doubles.length; i++) {
indices[i] = dis[i].index;
}
return indices;
}
Get range of values.
Params: - vpPairs – Array of valuePenaltyPairs to get range from.
Returns: a double equal to maximum value minus minimum value.
/**
* Get range of values.
*
* @param vpPairs Array of valuePenaltyPairs to get range from.
* @return a double equal to maximum value minus minimum value.
*/
private double valueRange(final ValuePenaltyPair[] vpPairs) {
double max = Double.NEGATIVE_INFINITY;
double min = Double.MAX_VALUE;
for (ValuePenaltyPair vpPair:vpPairs) {
if (vpPair.value > max) {
max = vpPair.value;
}
if (vpPair.value < min) {
min = vpPair.value;
}
}
return max-min;
}
Used to sort fitness values. Sorting is always in lower value first
order.
/**
* Used to sort fitness values. Sorting is always in lower value first
* order.
*/
private static class DoubleIndex implements Comparable<DoubleIndex> {
Value to compare. /** Value to compare. */
private final double value;
Index into sorted array. /** Index into sorted array. */
private final int index;
Params: - value – Value to compare.
- index – Index into sorted array.
/**
* @param value Value to compare.
* @param index Index into sorted array.
*/
DoubleIndex(double value, int index) {
this.value = value;
this.index = index;
}
{@inheritDoc} /** {@inheritDoc} */
public int compareTo(DoubleIndex o) {
return Double.compare(value, o.value);
}
{@inheritDoc} /** {@inheritDoc} */
@Override
public boolean equals(Object other) {
if (this == other) {
return true;
}
if (other instanceof DoubleIndex) {
return Double.compare(value, ((DoubleIndex) other).value) == 0;
}
return false;
}
{@inheritDoc} /** {@inheritDoc} */
@Override
public int hashCode() {
long bits = Double.doubleToLongBits(value);
return (int) ((1438542 ^ (bits >>> 32) ^ bits) & 0xffffffff);
}
}
Stores the value and penalty (for repair of out of bounds point).
/**
* Stores the value and penalty (for repair of out of bounds point).
*/
private static class ValuePenaltyPair {
Objective function value. /** Objective function value. */
private double value;
Penalty value for repair of out out of bounds points. /** Penalty value for repair of out out of bounds points. */
private double penalty;
Params: - value – Function value.
- penalty – Out-of-bounds penalty.
/**
* @param value Function value.
* @param penalty Out-of-bounds penalty.
*/
ValuePenaltyPair(final double value, final double penalty) {
this.value = value;
this.penalty = penalty;
}
}
Normalizes fitness values to the range [0,1]. Adds a penalty to the
fitness value if out of range.
/**
* Normalizes fitness values to the range [0,1]. Adds a penalty to the
* fitness value if out of range.
*/
private class FitnessFunction {
Flag indicating whether the objective variables are forced into their
bounds if defined
/**
* Flag indicating whether the objective variables are forced into their
* bounds if defined
*/
private final boolean isRepairMode;
Simple constructor.
/** Simple constructor.
*/
FitnessFunction() {
isRepairMode = true;
}
Params: - point – Normalized objective variables.
Returns: the objective value + penalty for violated bounds.
/**
* @param point Normalized objective variables.
* @return the objective value + penalty for violated bounds.
*/
public ValuePenaltyPair value(final double[] point) {
double value;
double penalty=0.0;
if (isRepairMode) {
double[] repaired = repair(point);
value = CMAESOptimizer.this.computeObjectiveValue(repaired);
penalty = penalty(point, repaired);
} else {
value = CMAESOptimizer.this.computeObjectiveValue(point);
}
value = isMinimize ? value : -value;
penalty = isMinimize ? penalty : -penalty;
return new ValuePenaltyPair(value,penalty);
}
Params: - x – Normalized objective variables.
Returns: true
if in bounds.
/**
* @param x Normalized objective variables.
* @return {@code true} if in bounds.
*/
public boolean isFeasible(final double[] x) {
final double[] lB = CMAESOptimizer.this.getLowerBound();
final double[] uB = CMAESOptimizer.this.getUpperBound();
for (int i = 0; i < x.length; i++) {
if (x[i] < lB[i]) {
return false;
}
if (x[i] > uB[i]) {
return false;
}
}
return true;
}
Params: - x – Normalized objective variables.
Returns: the repaired (i.e. all in bounds) objective variables.
/**
* @param x Normalized objective variables.
* @return the repaired (i.e. all in bounds) objective variables.
*/
private double[] repair(final double[] x) {
final double[] lB = CMAESOptimizer.this.getLowerBound();
final double[] uB = CMAESOptimizer.this.getUpperBound();
final double[] repaired = new double[x.length];
for (int i = 0; i < x.length; i++) {
if (x[i] < lB[i]) {
repaired[i] = lB[i];
} else if (x[i] > uB[i]) {
repaired[i] = uB[i];
} else {
repaired[i] = x[i];
}
}
return repaired;
}
Params: - x – Normalized objective variables.
- repaired – Repaired objective variables.
Returns: Penalty value according to the violation of the bounds.
/**
* @param x Normalized objective variables.
* @param repaired Repaired objective variables.
* @return Penalty value according to the violation of the bounds.
*/
private double penalty(final double[] x, final double[] repaired) {
double penalty = 0;
for (int i = 0; i < x.length; i++) {
double diff = FastMath.abs(x[i] - repaired[i]);
penalty += diff;
}
return isMinimize ? penalty : -penalty;
}
}
// -----Matrix utility functions similar to the Matlab build in functions------
Params: - m – Input matrix
Returns: Matrix representing the element-wise logarithm of m.
/**
* @param m Input matrix
* @return Matrix representing the element-wise logarithm of m.
*/
private static RealMatrix log(final RealMatrix m) {
final double[][] d = new double[m.getRowDimension()][m.getColumnDimension()];
for (int r = 0; r < m.getRowDimension(); r++) {
for (int c = 0; c < m.getColumnDimension(); c++) {
d[r][c] = FastMath.log(m.getEntry(r, c));
}
}
return new Array2DRowRealMatrix(d, false);
}
Params: - m – Input matrix.
Returns: Matrix representing the element-wise square root of m.
/**
* @param m Input matrix.
* @return Matrix representing the element-wise square root of m.
*/
private static RealMatrix sqrt(final RealMatrix m) {
final double[][] d = new double[m.getRowDimension()][m.getColumnDimension()];
for (int r = 0; r < m.getRowDimension(); r++) {
for (int c = 0; c < m.getColumnDimension(); c++) {
d[r][c] = FastMath.sqrt(m.getEntry(r, c));
}
}
return new Array2DRowRealMatrix(d, false);
}
Params: - m – Input matrix.
Returns: Matrix representing the element-wise square of m.
/**
* @param m Input matrix.
* @return Matrix representing the element-wise square of m.
*/
private static RealMatrix square(final RealMatrix m) {
final double[][] d = new double[m.getRowDimension()][m.getColumnDimension()];
for (int r = 0; r < m.getRowDimension(); r++) {
for (int c = 0; c < m.getColumnDimension(); c++) {
double e = m.getEntry(r, c);
d[r][c] = e * e;
}
}
return new Array2DRowRealMatrix(d, false);
}
Params: - m – Input matrix 1.
- n – Input matrix 2.
Returns: the matrix where the elements of m and n are element-wise multiplied.
/**
* @param m Input matrix 1.
* @param n Input matrix 2.
* @return the matrix where the elements of m and n are element-wise multiplied.
*/
private static RealMatrix times(final RealMatrix m, final RealMatrix n) {
final double[][] d = new double[m.getRowDimension()][m.getColumnDimension()];
for (int r = 0; r < m.getRowDimension(); r++) {
for (int c = 0; c < m.getColumnDimension(); c++) {
d[r][c] = m.getEntry(r, c) * n.getEntry(r, c);
}
}
return new Array2DRowRealMatrix(d, false);
}
Params: - m – Input matrix 1.
- n – Input matrix 2.
Returns: Matrix where the elements of m and n are element-wise divided.
/**
* @param m Input matrix 1.
* @param n Input matrix 2.
* @return Matrix where the elements of m and n are element-wise divided.
*/
private static RealMatrix divide(final RealMatrix m, final RealMatrix n) {
final double[][] d = new double[m.getRowDimension()][m.getColumnDimension()];
for (int r = 0; r < m.getRowDimension(); r++) {
for (int c = 0; c < m.getColumnDimension(); c++) {
d[r][c] = m.getEntry(r, c) / n.getEntry(r, c);
}
}
return new Array2DRowRealMatrix(d, false);
}
Params: - m – Input matrix.
- cols – Columns to select.
Returns: Matrix representing the selected columns.
/**
* @param m Input matrix.
* @param cols Columns to select.
* @return Matrix representing the selected columns.
*/
private static RealMatrix selectColumns(final RealMatrix m, final int[] cols) {
final double[][] d = new double[m.getRowDimension()][cols.length];
for (int r = 0; r < m.getRowDimension(); r++) {
for (int c = 0; c < cols.length; c++) {
d[r][c] = m.getEntry(r, cols[c]);
}
}
return new Array2DRowRealMatrix(d, false);
}
Params: - m – Input matrix.
- k – Diagonal position.
Returns: Upper triangular part of matrix.
/**
* @param m Input matrix.
* @param k Diagonal position.
* @return Upper triangular part of matrix.
*/
private static RealMatrix triu(final RealMatrix m, int k) {
final double[][] d = new double[m.getRowDimension()][m.getColumnDimension()];
for (int r = 0; r < m.getRowDimension(); r++) {
for (int c = 0; c < m.getColumnDimension(); c++) {
d[r][c] = r <= c - k ? m.getEntry(r, c) : 0;
}
}
return new Array2DRowRealMatrix(d, false);
}
Params: - m – Input matrix.
Returns: Row matrix representing the sums of the rows.
/**
* @param m Input matrix.
* @return Row matrix representing the sums of the rows.
*/
private static RealMatrix sumRows(final RealMatrix m) {
final double[][] d = new double[1][m.getColumnDimension()];
for (int c = 0; c < m.getColumnDimension(); c++) {
double sum = 0;
for (int r = 0; r < m.getRowDimension(); r++) {
sum += m.getEntry(r, c);
}
d[0][c] = sum;
}
return new Array2DRowRealMatrix(d, false);
}
Params: - m – Input matrix.
Returns: the diagonal n-by-n matrix if m is a column matrix or the column
matrix representing the diagonal if m is a n-by-n matrix.
/**
* @param m Input matrix.
* @return the diagonal n-by-n matrix if m is a column matrix or the column
* matrix representing the diagonal if m is a n-by-n matrix.
*/
private static RealMatrix diag(final RealMatrix m) {
if (m.getColumnDimension() == 1) {
final double[][] d = new double[m.getRowDimension()][m.getRowDimension()];
for (int i = 0; i < m.getRowDimension(); i++) {
d[i][i] = m.getEntry(i, 0);
}
return new Array2DRowRealMatrix(d, false);
} else {
final double[][] d = new double[m.getRowDimension()][1];
for (int i = 0; i < m.getColumnDimension(); i++) {
d[i][0] = m.getEntry(i, i);
}
return new Array2DRowRealMatrix(d, false);
}
}
Copies a column from m1 to m2.
Params: - m1 – Source matrix.
- col1 – Source column.
- m2 – Target matrix.
- col2 – Target column.
/**
* Copies a column from m1 to m2.
*
* @param m1 Source matrix.
* @param col1 Source column.
* @param m2 Target matrix.
* @param col2 Target column.
*/
private static void copyColumn(final RealMatrix m1, int col1,
RealMatrix m2, int col2) {
for (int i = 0; i < m1.getRowDimension(); i++) {
m2.setEntry(i, col2, m1.getEntry(i, col1));
}
}
Params: - n – Number of rows.
- m – Number of columns.
Returns: n-by-m matrix filled with 1.
/**
* @param n Number of rows.
* @param m Number of columns.
* @return n-by-m matrix filled with 1.
*/
private static RealMatrix ones(int n, int m) {
final double[][] d = new double[n][m];
for (int r = 0; r < n; r++) {
Arrays.fill(d[r], 1);
}
return new Array2DRowRealMatrix(d, false);
}
Params: - n – Number of rows.
- m – Number of columns.
Returns: n-by-m matrix of 0 values out of diagonal, and 1 values on
the diagonal.
/**
* @param n Number of rows.
* @param m Number of columns.
* @return n-by-m matrix of 0 values out of diagonal, and 1 values on
* the diagonal.
*/
private static RealMatrix eye(int n, int m) {
final double[][] d = new double[n][m];
for (int r = 0; r < n; r++) {
if (r < m) {
d[r][r] = 1;
}
}
return new Array2DRowRealMatrix(d, false);
}
Params: - n – Number of rows.
- m – Number of columns.
Returns: n-by-m matrix of zero values.
/**
* @param n Number of rows.
* @param m Number of columns.
* @return n-by-m matrix of zero values.
*/
private static RealMatrix zeros(int n, int m) {
return new Array2DRowRealMatrix(n, m);
}
Params: - mat – Input matrix.
- n – Number of row replicates.
- m – Number of column replicates.
Returns: a matrix which replicates the input matrix in both directions.
/**
* @param mat Input matrix.
* @param n Number of row replicates.
* @param m Number of column replicates.
* @return a matrix which replicates the input matrix in both directions.
*/
private static RealMatrix repmat(final RealMatrix mat, int n, int m) {
final int rd = mat.getRowDimension();
final int cd = mat.getColumnDimension();
final double[][] d = new double[n * rd][m * cd];
for (int r = 0; r < n * rd; r++) {
for (int c = 0; c < m * cd; c++) {
d[r][c] = mat.getEntry(r % rd, c % cd);
}
}
return new Array2DRowRealMatrix(d, false);
}
Params: - start – Start value.
- end – End value.
- step – Step size.
Returns: a sequence as column matrix.
/**
* @param start Start value.
* @param end End value.
* @param step Step size.
* @return a sequence as column matrix.
*/
private static RealMatrix sequence(double start, double end, double step) {
final int size = (int) ((end - start) / step + 1);
final double[][] d = new double[size][1];
double value = start;
for (int r = 0; r < size; r++) {
d[r][0] = value;
value += step;
}
return new Array2DRowRealMatrix(d, false);
}
Params: - m – Input matrix.
Returns: the maximum of the matrix element values.
/**
* @param m Input matrix.
* @return the maximum of the matrix element values.
*/
private static double max(final RealMatrix m) {
double max = -Double.MAX_VALUE;
for (int r = 0; r < m.getRowDimension(); r++) {
for (int c = 0; c < m.getColumnDimension(); c++) {
double e = m.getEntry(r, c);
if (max < e) {
max = e;
}
}
}
return max;
}
Params: - m – Input matrix.
Returns: the minimum of the matrix element values.
/**
* @param m Input matrix.
* @return the minimum of the matrix element values.
*/
private static double min(final RealMatrix m) {
double min = Double.MAX_VALUE;
for (int r = 0; r < m.getRowDimension(); r++) {
for (int c = 0; c < m.getColumnDimension(); c++) {
double e = m.getEntry(r, c);
if (min > e) {
min = e;
}
}
}
return min;
}
Params: - m – Input array.
Returns: the maximum of the array values.
/**
* @param m Input array.
* @return the maximum of the array values.
*/
private static double max(final double[] m) {
double max = -Double.MAX_VALUE;
for (int r = 0; r < m.length; r++) {
if (max < m[r]) {
max = m[r];
}
}
return max;
}
Params: - m – Input array.
Returns: the minimum of the array values.
/**
* @param m Input array.
* @return the minimum of the array values.
*/
private static double min(final double[] m) {
double min = Double.MAX_VALUE;
for (int r = 0; r < m.length; r++) {
if (min > m[r]) {
min = m[r];
}
}
return min;
}
Params: - indices – Input index array.
Returns: the inverse of the mapping defined by indices.
/**
* @param indices Input index array.
* @return the inverse of the mapping defined by indices.
*/
private static int[] inverse(final int[] indices) {
final int[] inverse = new int[indices.length];
for (int i = 0; i < indices.length; i++) {
inverse[indices[i]] = i;
}
return inverse;
}
Params: - indices – Input index array.
Returns: the indices in inverse order (last is first).
/**
* @param indices Input index array.
* @return the indices in inverse order (last is first).
*/
private static int[] reverse(final int[] indices) {
final int[] reverse = new int[indices.length];
for (int i = 0; i < indices.length; i++) {
reverse[i] = indices[indices.length - i - 1];
}
return reverse;
}
Params: - size – Length of random array.
Returns: an array of Gaussian random numbers.
/**
* @param size Length of random array.
* @return an array of Gaussian random numbers.
*/
private double[] randn(int size) {
final double[] randn = new double[size];
for (int i = 0; i < size; i++) {
randn[i] = random.nextGaussian();
}
return randn;
}
Params: - size – Number of rows.
- popSize – Population size.
Returns: a 2-dimensional matrix of Gaussian random numbers.
/**
* @param size Number of rows.
* @param popSize Population size.
* @return a 2-dimensional matrix of Gaussian random numbers.
*/
private RealMatrix randn1(int size, int popSize) {
final double[][] d = new double[size][popSize];
for (int r = 0; r < size; r++) {
for (int c = 0; c < popSize; c++) {
d[r][c] = random.nextGaussian();
}
}
return new Array2DRowRealMatrix(d, false);
}
}