/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ode.nonstiff;

import org.apache.commons.math3.util.FastMath;


This class implements the Luther sixth order Runge-Kutta integrator for Ordinary Differential Equations.

This method is described in H. A. Luther 1968 paper An explicit Sixth-Order Runge-Kutta Formula.

This method is an explicit Runge-Kutta method, its Butcher-array is the following one :

       0   |               0                     0                     0                     0                     0                     0
       1   |               1                     0                     0                     0                     0                     0
      1/2  |              3/8                   1/8                    0                     0                     0                     0
      2/3  |              8/27                  2/27                  8/27                   0                     0                     0
  (7-q)/14 | (  -21 +   9q)/392    (  -56 +   8q)/392    (  336 -  48q)/392    (  -63 +   3q)/392                  0                     0
  (7+q)/14 | (-1155 - 255q)/1960   ( -280 -  40q)/1960   (    0 - 320q)/1960   (   63 + 363q)/1960   ( 2352 + 392q)/1960                 0
       1   | (  330 + 105q)/180    (  120 +   0q)/180    ( -200 + 280q)/180    (  126 - 189q)/180    ( -686 - 126q)/180     ( 490 -  70q)/180
           |--------------------------------------------------------------------------------------------------------------------------------------------------
           |              1/20                   0                   16/45                  0                   49/180                 49/180         1/20
where q = √21

See Also:
Since:3.3
/** * This class implements the Luther sixth order Runge-Kutta * integrator for Ordinary Differential Equations. * <p> * This method is described in H. A. Luther 1968 paper <a * href="http://www.ams.org/journals/mcom/1968-22-102/S0025-5718-68-99876-1/S0025-5718-68-99876-1.pdf"> * An explicit Sixth-Order Runge-Kutta Formula</a>. * </p> * <p>This method is an explicit Runge-Kutta method, its Butcher-array * is the following one : * <pre> * 0 | 0 0 0 0 0 0 * 1 | 1 0 0 0 0 0 * 1/2 | 3/8 1/8 0 0 0 0 * 2/3 | 8/27 2/27 8/27 0 0 0 * (7-q)/14 | ( -21 + 9q)/392 ( -56 + 8q)/392 ( 336 - 48q)/392 ( -63 + 3q)/392 0 0 * (7+q)/14 | (-1155 - 255q)/1960 ( -280 - 40q)/1960 ( 0 - 320q)/1960 ( 63 + 363q)/1960 ( 2352 + 392q)/1960 0 * 1 | ( 330 + 105q)/180 ( 120 + 0q)/180 ( -200 + 280q)/180 ( 126 - 189q)/180 ( -686 - 126q)/180 ( 490 - 70q)/180 * |-------------------------------------------------------------------------------------------------------------------------------------------------- * | 1/20 0 16/45 0 49/180 49/180 1/20 * </pre> * where q = &radic;21</p> * * @see EulerIntegrator * @see ClassicalRungeKuttaIntegrator * @see GillIntegrator * @see MidpointIntegrator * @see ThreeEighthesIntegrator * @since 3.3 */
public class LutherIntegrator extends RungeKuttaIntegrator {
Square root.
/** Square root. */
private static final double Q = FastMath.sqrt(21);
Time steps Butcher array.
/** Time steps Butcher array. */
private static final double[] STATIC_C = { 1.0, 1.0 / 2.0, 2.0 / 3.0, (7.0 - Q) / 14.0, (7.0 + Q) / 14.0, 1.0 };
Internal weights Butcher array.
/** Internal weights Butcher array. */
private static final double[][] STATIC_A = { { 1.0 }, { 3.0 / 8.0, 1.0 / 8.0 }, { 8.0 / 27.0, 2.0 / 27.0, 8.0 / 27.0 }, { ( -21.0 + 9.0 * Q) / 392.0, ( -56.0 + 8.0 * Q) / 392.0, ( 336.0 - 48.0 * Q) / 392.0, (-63.0 + 3.0 * Q) / 392.0 }, { (-1155.0 - 255.0 * Q) / 1960.0, (-280.0 - 40.0 * Q) / 1960.0, ( 0.0 - 320.0 * Q) / 1960.0, ( 63.0 + 363.0 * Q) / 1960.0, (2352.0 + 392.0 * Q) / 1960.0 }, { ( 330.0 + 105.0 * Q) / 180.0, ( 120.0 + 0.0 * Q) / 180.0, (-200.0 + 280.0 * Q) / 180.0, (126.0 - 189.0 * Q) / 180.0, (-686.0 - 126.0 * Q) / 180.0, (490.0 - 70.0 * Q) / 180.0 } };
Propagation weights Butcher array.
/** Propagation weights Butcher array. */
private static final double[] STATIC_B = { 1.0 / 20.0, 0, 16.0 / 45.0, 0, 49.0 / 180.0, 49.0 / 180.0, 1.0 / 20.0 };
Simple constructor. Build a fourth-order Luther integrator with the given step.
Params:
  • step – integration step
/** Simple constructor. * Build a fourth-order Luther integrator with the given step. * @param step integration step */
public LutherIntegrator(final double step) { super("Luther", STATIC_C, STATIC_A, STATIC_B, new LutherStepInterpolator(), step); } }