/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.ode.nonstiff;
import java.io.IOException;
import java.io.ObjectInput;
import java.io.ObjectOutput;
import org.apache.commons.math3.ode.EquationsMapper;
import org.apache.commons.math3.ode.sampling.AbstractStepInterpolator;
import org.apache.commons.math3.ode.sampling.StepInterpolator;
import org.apache.commons.math3.util.FastMath;
This class implements an interpolator for the Gragg-Bulirsch-Stoer
integrator.
This interpolator compute dense output inside the last step
produced by a Gragg-Bulirsch-Stoer integrator.
This implementation is basically a reimplementation in Java of the
odex
fortran code by E. Hairer and G. Wanner. The redistribution policy
for this code is available here, for
convenience, it is reproduced below.
Copyright (c) 2004, Ernst Hairer
Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following
conditions are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
See Also: - GraggBulirschStoerIntegrator
Since: 1.2
/**
* This class implements an interpolator for the Gragg-Bulirsch-Stoer
* integrator.
*
* <p>This interpolator compute dense output inside the last step
* produced by a Gragg-Bulirsch-Stoer integrator.</p>
*
* <p>
* This implementation is basically a reimplementation in Java of the
* <a
* href="http://www.unige.ch/math/folks/hairer/prog/nonstiff/odex.f">odex</a>
* fortran code by E. Hairer and G. Wanner. The redistribution policy
* for this code is available <a
* href="http://www.unige.ch/~hairer/prog/licence.txt">here</a>, for
* convenience, it is reproduced below.</p>
* </p>
*
* <table border="0" width="80%" cellpadding="10" align="center" bgcolor="#E0E0E0">
* <tr><td>Copyright (c) 2004, Ernst Hairer</td></tr>
*
* <tr><td>Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
* <ul>
* <li>Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.</li>
* <li>Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.</li>
* </ul></td></tr>
*
* <tr><td><strong>THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
* BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.</strong></td></tr>
* </table>
*
* @see GraggBulirschStoerIntegrator
* @since 1.2
*/
class GraggBulirschStoerStepInterpolator
extends AbstractStepInterpolator {
Serializable version identifier. /** Serializable version identifier. */
private static final long serialVersionUID = 20110928L;
Slope at the beginning of the step. /** Slope at the beginning of the step. */
private double[] y0Dot;
State at the end of the step. /** State at the end of the step. */
private double[] y1;
Slope at the end of the step. /** Slope at the end of the step. */
private double[] y1Dot;
Derivatives at the middle of the step.
element 0 is state at midpoint, element 1 is first derivative ...
/** Derivatives at the middle of the step.
* element 0 is state at midpoint, element 1 is first derivative ...
*/
private double[][] yMidDots;
Interpolation polynomials. /** Interpolation polynomials. */
private double[][] polynomials;
Error coefficients for the interpolation. /** Error coefficients for the interpolation. */
private double[] errfac;
Degree of the interpolation polynomials. /** Degree of the interpolation polynomials. */
private int currentDegree;
Simple constructor.
This constructor should not be used directly, it is only intended
for the serialization process.
/** Simple constructor.
* This constructor should not be used directly, it is only intended
* for the serialization process.
*/
// CHECKSTYLE: stop RedundantModifier
// the public modifier here is needed for serialization
public GraggBulirschStoerStepInterpolator() {
y0Dot = null;
y1 = null;
y1Dot = null;
yMidDots = null;
resetTables(-1);
}
// CHECKSTYLE: resume RedundantModifier
Simple constructor.
Params: - y – reference to the integrator array holding the current state
- y0Dot – reference to the integrator array holding the slope
at the beginning of the step
- y1 – reference to the integrator array holding the state at
the end of the step
- y1Dot – reference to the integrator array holding the slope
at the end of the step
- yMidDots – reference to the integrator array holding the
derivatives at the middle point of the step
- forward – integration direction indicator
- primaryMapper – equations mapper for the primary equations set
- secondaryMappers – equations mappers for the secondary equations sets
/** Simple constructor.
* @param y reference to the integrator array holding the current state
* @param y0Dot reference to the integrator array holding the slope
* at the beginning of the step
* @param y1 reference to the integrator array holding the state at
* the end of the step
* @param y1Dot reference to the integrator array holding the slope
* at the end of the step
* @param yMidDots reference to the integrator array holding the
* derivatives at the middle point of the step
* @param forward integration direction indicator
* @param primaryMapper equations mapper for the primary equations set
* @param secondaryMappers equations mappers for the secondary equations sets
*/
GraggBulirschStoerStepInterpolator(final double[] y, final double[] y0Dot,
final double[] y1, final double[] y1Dot,
final double[][] yMidDots,
final boolean forward,
final EquationsMapper primaryMapper,
final EquationsMapper[] secondaryMappers) {
super(y, forward, primaryMapper, secondaryMappers);
this.y0Dot = y0Dot;
this.y1 = y1;
this.y1Dot = y1Dot;
this.yMidDots = yMidDots;
resetTables(yMidDots.length + 4);
}
Copy constructor.
Params: - interpolator – interpolator to copy from. The copy is a deep
copy: its arrays are separated from the original arrays of the
instance
/** Copy constructor.
* @param interpolator interpolator to copy from. The copy is a deep
* copy: its arrays are separated from the original arrays of the
* instance
*/
GraggBulirschStoerStepInterpolator(final GraggBulirschStoerStepInterpolator interpolator) {
super(interpolator);
final int dimension = currentState.length;
// the interpolator has been finalized,
// the following arrays are not needed anymore
y0Dot = null;
y1 = null;
y1Dot = null;
yMidDots = null;
// copy the interpolation polynomials (up to the current degree only)
if (interpolator.polynomials == null) {
polynomials = null;
currentDegree = -1;
} else {
resetTables(interpolator.currentDegree);
for (int i = 0; i < polynomials.length; ++i) {
polynomials[i] = new double[dimension];
System.arraycopy(interpolator.polynomials[i], 0,
polynomials[i], 0, dimension);
}
currentDegree = interpolator.currentDegree;
}
}
Reallocate the internal tables.
Reallocate the internal tables in order to be able to handle
interpolation polynomials up to the given degree
Params: - maxDegree – maximal degree to handle
/** Reallocate the internal tables.
* Reallocate the internal tables in order to be able to handle
* interpolation polynomials up to the given degree
* @param maxDegree maximal degree to handle
*/
private void resetTables(final int maxDegree) {
if (maxDegree < 0) {
polynomials = null;
errfac = null;
currentDegree = -1;
} else {
final double[][] newPols = new double[maxDegree + 1][];
if (polynomials != null) {
System.arraycopy(polynomials, 0, newPols, 0, polynomials.length);
for (int i = polynomials.length; i < newPols.length; ++i) {
newPols[i] = new double[currentState.length];
}
} else {
for (int i = 0; i < newPols.length; ++i) {
newPols[i] = new double[currentState.length];
}
}
polynomials = newPols;
// initialize the error factors array for interpolation
if (maxDegree <= 4) {
errfac = null;
} else {
errfac = new double[maxDegree - 4];
for (int i = 0; i < errfac.length; ++i) {
final int ip5 = i + 5;
errfac[i] = 1.0 / (ip5 * ip5);
final double e = 0.5 * FastMath.sqrt (((double) (i + 1)) / ip5);
for (int j = 0; j <= i; ++j) {
errfac[i] *= e / (j + 1);
}
}
}
currentDegree = 0;
}
}
{@inheritDoc} /** {@inheritDoc} */
@Override
protected StepInterpolator doCopy() {
return new GraggBulirschStoerStepInterpolator(this);
}
Compute the interpolation coefficients for dense output.
Params: - mu – degree of the interpolation polynomial
- h – current step
/** Compute the interpolation coefficients for dense output.
* @param mu degree of the interpolation polynomial
* @param h current step
*/
public void computeCoefficients(final int mu, final double h) {
if ((polynomials == null) || (polynomials.length <= (mu + 4))) {
resetTables(mu + 4);
}
currentDegree = mu + 4;
for (int i = 0; i < currentState.length; ++i) {
final double yp0 = h * y0Dot[i];
final double yp1 = h * y1Dot[i];
final double ydiff = y1[i] - currentState[i];
final double aspl = ydiff - yp1;
final double bspl = yp0 - ydiff;
polynomials[0][i] = currentState[i];
polynomials[1][i] = ydiff;
polynomials[2][i] = aspl;
polynomials[3][i] = bspl;
if (mu < 0) {
return;
}
// compute the remaining coefficients
final double ph0 = 0.5 * (currentState[i] + y1[i]) + 0.125 * (aspl + bspl);
polynomials[4][i] = 16 * (yMidDots[0][i] - ph0);
if (mu > 0) {
final double ph1 = ydiff + 0.25 * (aspl - bspl);
polynomials[5][i] = 16 * (yMidDots[1][i] - ph1);
if (mu > 1) {
final double ph2 = yp1 - yp0;
polynomials[6][i] = 16 * (yMidDots[2][i] - ph2 + polynomials[4][i]);
if (mu > 2) {
final double ph3 = 6 * (bspl - aspl);
polynomials[7][i] = 16 * (yMidDots[3][i] - ph3 + 3 * polynomials[5][i]);
for (int j = 4; j <= mu; ++j) {
final double fac1 = 0.5 * j * (j - 1);
final double fac2 = 2 * fac1 * (j - 2) * (j - 3);
polynomials[j+4][i] =
16 * (yMidDots[j][i] + fac1 * polynomials[j+2][i] - fac2 * polynomials[j][i]);
}
}
}
}
}
}
Estimate interpolation error.
Params: - scale – scaling array
Returns: estimate of the interpolation error
/** Estimate interpolation error.
* @param scale scaling array
* @return estimate of the interpolation error
*/
public double estimateError(final double[] scale) {
double error = 0;
if (currentDegree >= 5) {
for (int i = 0; i < scale.length; ++i) {
final double e = polynomials[currentDegree][i] / scale[i];
error += e * e;
}
error = FastMath.sqrt(error / scale.length) * errfac[currentDegree - 5];
}
return error;
}
{@inheritDoc} /** {@inheritDoc} */
@Override
protected void computeInterpolatedStateAndDerivatives(final double theta,
final double oneMinusThetaH) {
final int dimension = currentState.length;
final double oneMinusTheta = 1.0 - theta;
final double theta05 = theta - 0.5;
final double tOmT = theta * oneMinusTheta;
final double t4 = tOmT * tOmT;
final double t4Dot = 2 * tOmT * (1 - 2 * theta);
final double dot1 = 1.0 / h;
final double dot2 = theta * (2 - 3 * theta) / h;
final double dot3 = ((3 * theta - 4) * theta + 1) / h;
for (int i = 0; i < dimension; ++i) {
final double p0 = polynomials[0][i];
final double p1 = polynomials[1][i];
final double p2 = polynomials[2][i];
final double p3 = polynomials[3][i];
interpolatedState[i] = p0 + theta * (p1 + oneMinusTheta * (p2 * theta + p3 * oneMinusTheta));
interpolatedDerivatives[i] = dot1 * p1 + dot2 * p2 + dot3 * p3;
if (currentDegree > 3) {
double cDot = 0;
double c = polynomials[currentDegree][i];
for (int j = currentDegree - 1; j > 3; --j) {
final double d = 1.0 / (j - 3);
cDot = d * (theta05 * cDot + c);
c = polynomials[j][i] + c * d * theta05;
}
interpolatedState[i] += t4 * c;
interpolatedDerivatives[i] += (t4 * cDot + t4Dot * c) / h;
}
}
if (h == 0) {
// in this degenerated case, the previous computation leads to NaN for derivatives
// we fix this by using the derivatives at midpoint
System.arraycopy(yMidDots[1], 0, interpolatedDerivatives, 0, dimension);
}
}
{@inheritDoc} /** {@inheritDoc} */
@Override
public void writeExternal(final ObjectOutput out)
throws IOException {
final int dimension = (currentState == null) ? -1 : currentState.length;
// save the state of the base class
writeBaseExternal(out);
// save the local attributes (but not the temporary vectors)
out.writeInt(currentDegree);
for (int k = 0; k <= currentDegree; ++k) {
for (int l = 0; l < dimension; ++l) {
out.writeDouble(polynomials[k][l]);
}
}
}
{@inheritDoc} /** {@inheritDoc} */
@Override
public void readExternal(final ObjectInput in)
throws IOException, ClassNotFoundException {
// read the base class
final double t = readBaseExternal(in);
final int dimension = (currentState == null) ? -1 : currentState.length;
// read the local attributes
final int degree = in.readInt();
resetTables(degree);
currentDegree = degree;
for (int k = 0; k <= currentDegree; ++k) {
for (int l = 0; l < dimension; ++l) {
polynomials[k][l] = in.readDouble();
}
}
// we can now set the interpolated time and state
setInterpolatedTime(t);
}
}