/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ode.nonstiff;

import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.MaxCountExceededException;
import org.apache.commons.math3.exception.NoBracketingException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.ode.ExpandableStatefulODE;
import org.apache.commons.math3.util.FastMath;

This class implements the common part of all embedded Runge-Kutta integrators for Ordinary Differential Equations.

These methods are embedded explicit Runge-Kutta methods with two sets of coefficients allowing to estimate the error, their Butcher arrays are as follows :

   0  |
  c2  | a21
  c3  | a31  a32
  ... |        ...
  cs  | as1  as2  ...  ass-1
      |--------------------------
      |  b1   b2  ...   bs-1  bs
      |  b'1  b'2 ...   b's-1 b's

In fact, we rather use the array defined by ej = bj - b'j to compute directly the error rather than computing two estimates and then comparing them.

Some methods are qualified as fsal (first same as last) methods. This means the last evaluation of the derivatives in one step is the same as the first in the next step. Then, this evaluation can be reused from one step to the next one and the cost of such a method is really s-1 evaluations despite the method still has s stages. This behaviour is true only for successful steps, if the step is rejected after the error estimation phase, no evaluation is saved. For an fsal method, we have cs = 1 and asi = bi for all i.

Since:1.2
/** * This class implements the common part of all embedded Runge-Kutta * integrators for Ordinary Differential Equations. * * <p>These methods are embedded explicit Runge-Kutta methods with two * sets of coefficients allowing to estimate the error, their Butcher * arrays are as follows : * <pre> * 0 | * c2 | a21 * c3 | a31 a32 * ... | ... * cs | as1 as2 ... ass-1 * |-------------------------- * | b1 b2 ... bs-1 bs * | b'1 b'2 ... b's-1 b's * </pre> * </p> * * <p>In fact, we rather use the array defined by ej = bj - b'j to * compute directly the error rather than computing two estimates and * then comparing them.</p> * * <p>Some methods are qualified as <i>fsal</i> (first same as last) * methods. This means the last evaluation of the derivatives in one * step is the same as the first in the next step. Then, this * evaluation can be reused from one step to the next one and the cost * of such a method is really s-1 evaluations despite the method still * has s stages. This behaviour is true only for successful steps, if * the step is rejected after the error estimation phase, no * evaluation is saved. For an <i>fsal</i> method, we have cs = 1 and * asi = bi for all i.</p> * * @since 1.2 */
public abstract class EmbeddedRungeKuttaIntegrator extends AdaptiveStepsizeIntegrator {
Indicator for fsal methods.
/** Indicator for <i>fsal</i> methods. */
private final boolean fsal;
Time steps from Butcher array (without the first zero).
/** Time steps from Butcher array (without the first zero). */
private final double[] c;
Internal weights from Butcher array (without the first empty row).
/** Internal weights from Butcher array (without the first empty row). */
private final double[][] a;
External weights for the high order method from Butcher array.
/** External weights for the high order method from Butcher array. */
private final double[] b;
Prototype of the step interpolator.
/** Prototype of the step interpolator. */
private final RungeKuttaStepInterpolator prototype;
Stepsize control exponent.
/** Stepsize control exponent. */
private final double exp;
Safety factor for stepsize control.
/** Safety factor for stepsize control. */
private double safety;
Minimal reduction factor for stepsize control.
/** Minimal reduction factor for stepsize control. */
private double minReduction;
Maximal growth factor for stepsize control.
/** Maximal growth factor for stepsize control. */
private double maxGrowth;
Build a Runge-Kutta integrator with the given Butcher array.
Params:
  • name – name of the method
  • fsal – indicate that the method is an fsal
  • c – time steps from Butcher array (without the first zero)
  • a – internal weights from Butcher array (without the first empty row)
  • b – propagation weights for the high order method from Butcher array
  • prototype – prototype of the step interpolator to use
  • minStep – minimal step (sign is irrelevant, regardless of integration direction, forward or backward), the last step can be smaller than this
  • maxStep – maximal step (sign is irrelevant, regardless of integration direction, forward or backward), the last step can be smaller than this
  • scalAbsoluteTolerance – allowed absolute error
  • scalRelativeTolerance – allowed relative error
/** Build a Runge-Kutta integrator with the given Butcher array. * @param name name of the method * @param fsal indicate that the method is an <i>fsal</i> * @param c time steps from Butcher array (without the first zero) * @param a internal weights from Butcher array (without the first empty row) * @param b propagation weights for the high order method from Butcher array * @param prototype prototype of the step interpolator to use * @param minStep minimal step (sign is irrelevant, regardless of * integration direction, forward or backward), the last step can * be smaller than this * @param maxStep maximal step (sign is irrelevant, regardless of * integration direction, forward or backward), the last step can * be smaller than this * @param scalAbsoluteTolerance allowed absolute error * @param scalRelativeTolerance allowed relative error */
protected EmbeddedRungeKuttaIntegrator(final String name, final boolean fsal, final double[] c, final double[][] a, final double[] b, final RungeKuttaStepInterpolator prototype, final double minStep, final double maxStep, final double scalAbsoluteTolerance, final double scalRelativeTolerance) { super(name, minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance); this.fsal = fsal; this.c = c; this.a = a; this.b = b; this.prototype = prototype; exp = -1.0 / getOrder(); // set the default values of the algorithm control parameters setSafety(0.9); setMinReduction(0.2); setMaxGrowth(10.0); }
Build a Runge-Kutta integrator with the given Butcher array.
Params:
  • name – name of the method
  • fsal – indicate that the method is an fsal
  • c – time steps from Butcher array (without the first zero)
  • a – internal weights from Butcher array (without the first empty row)
  • b – propagation weights for the high order method from Butcher array
  • prototype – prototype of the step interpolator to use
  • minStep – minimal step (must be positive even for backward integration), the last step can be smaller than this
  • maxStep – maximal step (must be positive even for backward integration)
  • vecAbsoluteTolerance – allowed absolute error
  • vecRelativeTolerance – allowed relative error
/** Build a Runge-Kutta integrator with the given Butcher array. * @param name name of the method * @param fsal indicate that the method is an <i>fsal</i> * @param c time steps from Butcher array (without the first zero) * @param a internal weights from Butcher array (without the first empty row) * @param b propagation weights for the high order method from Butcher array * @param prototype prototype of the step interpolator to use * @param minStep minimal step (must be positive even for backward * integration), the last step can be smaller than this * @param maxStep maximal step (must be positive even for backward * integration) * @param vecAbsoluteTolerance allowed absolute error * @param vecRelativeTolerance allowed relative error */
protected EmbeddedRungeKuttaIntegrator(final String name, final boolean fsal, final double[] c, final double[][] a, final double[] b, final RungeKuttaStepInterpolator prototype, final double minStep, final double maxStep, final double[] vecAbsoluteTolerance, final double[] vecRelativeTolerance) { super(name, minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance); this.fsal = fsal; this.c = c; this.a = a; this.b = b; this.prototype = prototype; exp = -1.0 / getOrder(); // set the default values of the algorithm control parameters setSafety(0.9); setMinReduction(0.2); setMaxGrowth(10.0); }
Get the order of the method.
Returns:order of the method
/** Get the order of the method. * @return order of the method */
public abstract int getOrder();
Get the safety factor for stepsize control.
Returns:safety factor
/** Get the safety factor for stepsize control. * @return safety factor */
public double getSafety() { return safety; }
Set the safety factor for stepsize control.
Params:
  • safety – safety factor
/** Set the safety factor for stepsize control. * @param safety safety factor */
public void setSafety(final double safety) { this.safety = safety; }
{@inheritDoc}
/** {@inheritDoc} */
@Override public void integrate(final ExpandableStatefulODE equations, final double t) throws NumberIsTooSmallException, DimensionMismatchException, MaxCountExceededException, NoBracketingException { sanityChecks(equations, t); setEquations(equations); final boolean forward = t > equations.getTime(); // create some internal working arrays final double[] y0 = equations.getCompleteState(); final double[] y = y0.clone(); final int stages = c.length + 1; final double[][] yDotK = new double[stages][y.length]; final double[] yTmp = y0.clone(); final double[] yDotTmp = new double[y.length]; // set up an interpolator sharing the integrator arrays final RungeKuttaStepInterpolator interpolator = (RungeKuttaStepInterpolator) prototype.copy(); interpolator.reinitialize(this, yTmp, yDotK, forward, equations.getPrimaryMapper(), equations.getSecondaryMappers()); interpolator.storeTime(equations.getTime()); // set up integration control objects stepStart = equations.getTime(); double hNew = 0; boolean firstTime = true; initIntegration(equations.getTime(), y0, t); // main integration loop isLastStep = false; do { interpolator.shift(); // iterate over step size, ensuring local normalized error is smaller than 1 double error = 10; while (error >= 1.0) { if (firstTime || !fsal) { // first stage computeDerivatives(stepStart, y, yDotK[0]); } if (firstTime) { final double[] scale = new double[mainSetDimension]; if (vecAbsoluteTolerance == null) { for (int i = 0; i < scale.length; ++i) { scale[i] = scalAbsoluteTolerance + scalRelativeTolerance * FastMath.abs(y[i]); } } else { for (int i = 0; i < scale.length; ++i) { scale[i] = vecAbsoluteTolerance[i] + vecRelativeTolerance[i] * FastMath.abs(y[i]); } } hNew = initializeStep(forward, getOrder(), scale, stepStart, y, yDotK[0], yTmp, yDotK[1]); firstTime = false; } stepSize = hNew; if (forward) { if (stepStart + stepSize >= t) { stepSize = t - stepStart; } } else { if (stepStart + stepSize <= t) { stepSize = t - stepStart; } } // next stages for (int k = 1; k < stages; ++k) { for (int j = 0; j < y0.length; ++j) { double sum = a[k-1][0] * yDotK[0][j]; for (int l = 1; l < k; ++l) { sum += a[k-1][l] * yDotK[l][j]; } yTmp[j] = y[j] + stepSize * sum; } computeDerivatives(stepStart + c[k-1] * stepSize, yTmp, yDotK[k]); } // estimate the state at the end of the step for (int j = 0; j < y0.length; ++j) { double sum = b[0] * yDotK[0][j]; for (int l = 1; l < stages; ++l) { sum += b[l] * yDotK[l][j]; } yTmp[j] = y[j] + stepSize * sum; } // estimate the error at the end of the step error = estimateError(yDotK, y, yTmp, stepSize); if (error >= 1.0) { // reject the step and attempt to reduce error by stepsize control final double factor = FastMath.min(maxGrowth, FastMath.max(minReduction, safety * FastMath.pow(error, exp))); hNew = filterStep(stepSize * factor, forward, false); } } // local error is small enough: accept the step, trigger events and step handlers interpolator.storeTime(stepStart + stepSize); System.arraycopy(yTmp, 0, y, 0, y0.length); System.arraycopy(yDotK[stages - 1], 0, yDotTmp, 0, y0.length); stepStart = acceptStep(interpolator, y, yDotTmp, t); System.arraycopy(y, 0, yTmp, 0, y.length); if (!isLastStep) { // prepare next step interpolator.storeTime(stepStart); if (fsal) { // save the last evaluation for the next step System.arraycopy(yDotTmp, 0, yDotK[0], 0, y0.length); } // stepsize control for next step final double factor = FastMath.min(maxGrowth, FastMath.max(minReduction, safety * FastMath.pow(error, exp))); final double scaledH = stepSize * factor; final double nextT = stepStart + scaledH; final boolean nextIsLast = forward ? (nextT >= t) : (nextT <= t); hNew = filterStep(scaledH, forward, nextIsLast); final double filteredNextT = stepStart + hNew; final boolean filteredNextIsLast = forward ? (filteredNextT >= t) : (filteredNextT <= t); if (filteredNextIsLast) { hNew = t - stepStart; } } } while (!isLastStep); // dispatch results equations.setTime(stepStart); equations.setCompleteState(y); resetInternalState(); }
Get the minimal reduction factor for stepsize control.
Returns:minimal reduction factor
/** Get the minimal reduction factor for stepsize control. * @return minimal reduction factor */
public double getMinReduction() { return minReduction; }
Set the minimal reduction factor for stepsize control.
Params:
  • minReduction – minimal reduction factor
/** Set the minimal reduction factor for stepsize control. * @param minReduction minimal reduction factor */
public void setMinReduction(final double minReduction) { this.minReduction = minReduction; }
Get the maximal growth factor for stepsize control.
Returns:maximal growth factor
/** Get the maximal growth factor for stepsize control. * @return maximal growth factor */
public double getMaxGrowth() { return maxGrowth; }
Set the maximal growth factor for stepsize control.
Params:
  • maxGrowth – maximal growth factor
/** Set the maximal growth factor for stepsize control. * @param maxGrowth maximal growth factor */
public void setMaxGrowth(final double maxGrowth) { this.maxGrowth = maxGrowth; }
Compute the error ratio.
Params:
  • yDotK – derivatives computed during the first stages
  • y0 – estimate of the step at the start of the step
  • y1 – estimate of the step at the end of the step
  • h – current step
Returns:error ratio, greater than 1 if step should be rejected
/** Compute the error ratio. * @param yDotK derivatives computed during the first stages * @param y0 estimate of the step at the start of the step * @param y1 estimate of the step at the end of the step * @param h current step * @return error ratio, greater than 1 if step should be rejected */
protected abstract double estimateError(double[][] yDotK, double[] y0, double[] y1, double h); }