/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ml.neuralnet.twod.util;

import org.apache.commons.math3.ml.neuralnet.MapUtils;
import org.apache.commons.math3.ml.neuralnet.Neuron;
import org.apache.commons.math3.ml.neuralnet.twod.NeuronSquareMesh2D;
import org.apache.commons.math3.ml.distance.DistanceMeasure;
import org.apache.commons.math3.exception.NumberIsTooSmallException;

Visualization of high-dimensional data projection on a 2D-map. The method is described in Using Smoothed Data Histograms for Cluster Visualization in Self-Organizing Maps
by Elias Pampalk, Andreas Rauber and Dieter Merkl.
Since:3.6
/** * Visualization of high-dimensional data projection on a 2D-map. * The method is described in * <quote> * <em>Using Smoothed Data Histograms for Cluster Visualization in Self-Organizing Maps</em> * <br> * by Elias Pampalk, Andreas Rauber and Dieter Merkl. * </quote> * @since 3.6 */
public class SmoothedDataHistogram implements MapDataVisualization {
Smoothing parameter.
/** Smoothing parameter. */
private final int smoothingBins;
Distance.
/** Distance. */
private final DistanceMeasure distance;
Normalization factor.
/** Normalization factor. */
private final double membershipNormalization;
Params:
  • smoothingBins – Number of bins.
  • distance – Distance.
/** * @param smoothingBins Number of bins. * @param distance Distance. */
public SmoothedDataHistogram(int smoothingBins, DistanceMeasure distance) { this.smoothingBins = smoothingBins; this.distance = distance; double sum = 0; for (int i = 0; i < smoothingBins; i++) { sum += smoothingBins - i; } this.membershipNormalization = 1d / sum; }
{@inheritDoc}
Throws:
/** * {@inheritDoc} * * @throws NumberIsTooSmallException if the size of the {@code map} * is smaller than the number of {@link #SmoothedDataHistogram(int,DistanceMeasure) * smoothing bins}. */
public double[][] computeImage(NeuronSquareMesh2D map, Iterable<double[]> data) { final int nR = map.getNumberOfRows(); final int nC = map.getNumberOfColumns(); final int mapSize = nR * nC; if (mapSize < smoothingBins) { throw new NumberIsTooSmallException(mapSize, smoothingBins, true); } final LocationFinder finder = new LocationFinder(map); // Histogram bins. final double[][] histo = new double[nR][nC]; for (double[] sample : data) { final Neuron[] sorted = MapUtils.sort(sample, map.getNetwork(), distance); for (int i = 0; i < smoothingBins; i++) { final LocationFinder.Location loc = finder.getLocation(sorted[i]); final int row = loc.getRow(); final int col = loc.getColumn(); histo[row][col] += (smoothingBins - i) * membershipNormalization; } } return histo; } }