/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ml.neuralnet.sofm.util;

import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.analysis.function.Logistic;

Decay function whose shape is similar to a sigmoid.
Class is immutable.
Since:3.3
/** * Decay function whose shape is similar to a sigmoid. * <br/> * Class is immutable. * * @since 3.3 */
public class QuasiSigmoidDecayFunction {
Sigmoid.
/** Sigmoid. */
private final Logistic sigmoid; /** See {@link #value(long)}. */ private final double scale;
Creates an instance. The function f will have the following properties:
  • f(0) = initValue
  • numCall is the inflexion point
  • slope = f'(numCall)
Params:
  • initValue – Initial value, i.e. value(0).
  • slope – Value of the function derivative at numCall.
  • numCall – Inflexion point.
Throws:
/** * Creates an instance. * The function {@code f} will have the following properties: * <ul> * <li>{@code f(0) = initValue}</li> * <li>{@code numCall} is the inflexion point</li> * <li>{@code slope = f'(numCall)}</li> * </ul> * * @param initValue Initial value, i.e. {@link #value(long) value(0)}. * @param slope Value of the function derivative at {@code numCall}. * @param numCall Inflexion point. * @throws NotStrictlyPositiveException if {@code initValue <= 0}. * @throws NumberIsTooLargeException if {@code slope >= 0}. * @throws NotStrictlyPositiveException if {@code numCall <= 0}. */
public QuasiSigmoidDecayFunction(double initValue, double slope, long numCall) { if (initValue <= 0) { throw new NotStrictlyPositiveException(initValue); } if (slope >= 0) { throw new NumberIsTooLargeException(slope, 0, false); } if (numCall <= 1) { throw new NotStrictlyPositiveException(numCall); } final double k = initValue; final double m = numCall; final double b = 4 * slope / initValue; final double q = 1; final double a = 0; final double n = 1; sigmoid = new Logistic(k, m, b, q, a, n); final double y0 = sigmoid.value(0); scale = k / y0; }
Computes the value of the learning factor.
Params:
  • numCall – Current step of the training task.
Returns:the value of the function at numCall.
/** * Computes the value of the learning factor. * * @param numCall Current step of the training task. * @return the value of the function at {@code numCall}. */
public double value(long numCall) { return scale * sigmoid.value(numCall); } }