/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.linear;

import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.MaxCountExceededException;
import org.apache.commons.math3.exception.NullArgumentException;
import org.apache.commons.math3.exception.util.ExceptionContext;
import org.apache.commons.math3.util.IterationManager;

This is an implementation of the conjugate gradient method for RealLinearOperator. It follows closely the template by Barrett et al. (1994) (figure 2.5). The linear system at hand is A · x = b, and the residual is r = b - A · x.

Default stopping criterion

A default stopping criterion is implemented. The iterations stop when || r || ≤ δ || b ||, where b is the right-hand side vector, r the current estimate of the residual, and δ a user-specified tolerance. It should be noted that r is the so-called updated residual, which might differ from the true residual due to rounding-off errors (see e.g. Strakos and Tichy, 2002).

Iteration count

In the present context, an iteration should be understood as one evaluation of the matrix-vector product A · x. The initialization phase therefore counts as one iteration.

Exception context

Besides standard DimensionMismatchException, this class might throw NonPositiveDefiniteOperatorException if the linear operator or the preconditioner are not positive definite. In this case, the ExceptionContext provides some more information

  • key "operator" points to the offending linear operator, say L,
  • key "vector" points to the offending vector, say x, such that xT · L · x < 0.

References

Barret et al. (1994)
R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. M. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine and H. Van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM
Strakos and Tichy (2002)
Z. Strakos and P. Tichy, On error estimation in the conjugate gradient method and why it works in finite precision computations, Electronic Transactions on Numerical Analysis 13: 56-80, 2002
Since:3.0
/** * <p> * This is an implementation of the conjugate gradient method for * {@link RealLinearOperator}. It follows closely the template by <a * href="#BARR1994">Barrett et al. (1994)</a> (figure 2.5). The linear system at * hand is A &middot; x = b, and the residual is r = b - A &middot; x. * </p> * <h3><a id="stopcrit">Default stopping criterion</a></h3> * <p> * A default stopping criterion is implemented. The iterations stop when || r || * &le; &delta; || b ||, where b is the right-hand side vector, r the current * estimate of the residual, and &delta; a user-specified tolerance. It should * be noted that r is the so-called <em>updated</em> residual, which might * differ from the true residual due to rounding-off errors (see e.g. <a * href="#STRA2002">Strakos and Tichy, 2002</a>). * </p> * <h3>Iteration count</h3> * <p> * In the present context, an iteration should be understood as one evaluation * of the matrix-vector product A &middot; x. The initialization phase therefore * counts as one iteration. * </p> * <h3><a id="context">Exception context</a></h3> * <p> * Besides standard {@link DimensionMismatchException}, this class might throw * {@link NonPositiveDefiniteOperatorException} if the linear operator or * the preconditioner are not positive definite. In this case, the * {@link ExceptionContext} provides some more information * <ul> * <li>key {@code "operator"} points to the offending linear operator, say L,</li> * <li>key {@code "vector"} points to the offending vector, say x, such that * x<sup>T</sup> &middot; L &middot; x < 0.</li> * </ul> * </p> * <h3>References</h3> * <dl> * <dt><a id="BARR1994">Barret et al. (1994)</a></dt> * <dd>R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. M. Donato, J. Dongarra, * V. Eijkhout, R. Pozo, C. Romine and H. Van der Vorst, * <a href="http://www.netlib.org/linalg/html_templates/Templates.html"><em> * Templates for the Solution of Linear Systems: Building Blocks for Iterative * Methods</em></a>, SIAM</dd> * <dt><a id="STRA2002">Strakos and Tichy (2002) * <dt> * <dd>Z. Strakos and P. Tichy, <a * href="http://etna.mcs.kent.edu/vol.13.2002/pp56-80.dir/pp56-80.pdf"> * <em>On error estimation in the conjugate gradient method and why it works * in finite precision computations</em></a>, Electronic Transactions on * Numerical Analysis 13: 56-80, 2002</dd> * </dl> * * @since 3.0 */
public class ConjugateGradient extends PreconditionedIterativeLinearSolver {
Key for the exception context.
/** Key for the <a href="#context">exception context</a>. */
public static final String OPERATOR = "operator";
Key for the exception context.
/** Key for the <a href="#context">exception context</a>. */
public static final String VECTOR = "vector";
true if positive-definiteness of matrix and preconditioner should be checked.
/** * {@code true} if positive-definiteness of matrix and preconditioner should * be checked. */
private boolean check;
The value of δ, for the default stopping criterion.
/** The value of &delta;, for the default stopping criterion. */
private final double delta;
Creates a new instance of this class, with default stopping criterion.
Params:
  • maxIterations – the maximum number of iterations
  • delta – the δ parameter for the default stopping criterion
  • check – true if positive definiteness of both matrix and preconditioner should be checked
/** * Creates a new instance of this class, with <a href="#stopcrit">default * stopping criterion</a>. * * @param maxIterations the maximum number of iterations * @param delta the &delta; parameter for the default stopping criterion * @param check {@code true} if positive definiteness of both matrix and * preconditioner should be checked */
public ConjugateGradient(final int maxIterations, final double delta, final boolean check) { super(maxIterations); this.delta = delta; this.check = check; }
Creates a new instance of this class, with default stopping criterion and custom iteration manager.
Params:
  • manager – the custom iteration manager
  • delta – the δ parameter for the default stopping criterion
  • check – true if positive definiteness of both matrix and preconditioner should be checked
Throws:
/** * Creates a new instance of this class, with <a href="#stopcrit">default * stopping criterion</a> and custom iteration manager. * * @param manager the custom iteration manager * @param delta the &delta; parameter for the default stopping criterion * @param check {@code true} if positive definiteness of both matrix and * preconditioner should be checked * @throws NullArgumentException if {@code manager} is {@code null} */
public ConjugateGradient(final IterationManager manager, final double delta, final boolean check) throws NullArgumentException { super(manager); this.delta = delta; this.check = check; }
Returns true if positive-definiteness should be checked for both matrix and preconditioner.
Returns:true if the tests are to be performed
/** * Returns {@code true} if positive-definiteness should be checked for both * matrix and preconditioner. * * @return {@code true} if the tests are to be performed */
public final boolean getCheck() { return check; }
{@inheritDoc}
Throws:
/** * {@inheritDoc} * * @throws NonPositiveDefiniteOperatorException if {@code a} or {@code m} is * not positive definite */
@Override public RealVector solveInPlace(final RealLinearOperator a, final RealLinearOperator m, final RealVector b, final RealVector x0) throws NullArgumentException, NonPositiveDefiniteOperatorException, NonSquareOperatorException, DimensionMismatchException, MaxCountExceededException { checkParameters(a, m, b, x0); final IterationManager manager = getIterationManager(); // Initialization of default stopping criterion manager.resetIterationCount(); final double rmax = delta * b.getNorm(); final RealVector bro = RealVector.unmodifiableRealVector(b); // Initialization phase counts as one iteration. manager.incrementIterationCount(); // p and x are constructed as copies of x0, since presumably, the type // of x is optimized for the calculation of the matrix-vector product // A.x. final RealVector x = x0; final RealVector xro = RealVector.unmodifiableRealVector(x); final RealVector p = x.copy(); RealVector q = a.operate(p); final RealVector r = b.combine(1, -1, q); final RealVector rro = RealVector.unmodifiableRealVector(r); double rnorm = r.getNorm(); RealVector z; if (m == null) { z = r; } else { z = null; } IterativeLinearSolverEvent evt; evt = new DefaultIterativeLinearSolverEvent(this, manager.getIterations(), xro, bro, rro, rnorm); manager.fireInitializationEvent(evt); if (rnorm <= rmax) { manager.fireTerminationEvent(evt); return x; } double rhoPrev = 0.; while (true) { manager.incrementIterationCount(); evt = new DefaultIterativeLinearSolverEvent(this, manager.getIterations(), xro, bro, rro, rnorm); manager.fireIterationStartedEvent(evt); if (m != null) { z = m.operate(r); } final double rhoNext = r.dotProduct(z); if (check && (rhoNext <= 0.)) { final NonPositiveDefiniteOperatorException e; e = new NonPositiveDefiniteOperatorException(); final ExceptionContext context = e.getContext(); context.setValue(OPERATOR, m); context.setValue(VECTOR, r); throw e; } if (manager.getIterations() == 2) { p.setSubVector(0, z); } else { p.combineToSelf(rhoNext / rhoPrev, 1., z); } q = a.operate(p); final double pq = p.dotProduct(q); if (check && (pq <= 0.)) { final NonPositiveDefiniteOperatorException e; e = new NonPositiveDefiniteOperatorException(); final ExceptionContext context = e.getContext(); context.setValue(OPERATOR, a); context.setValue(VECTOR, p); throw e; } final double alpha = rhoNext / pq; x.combineToSelf(1., alpha, p); r.combineToSelf(1., -alpha, q); rhoPrev = rhoNext; rnorm = r.getNorm(); evt = new DefaultIterativeLinearSolverEvent(this, manager.getIterations(), xro, bro, rro, rnorm); manager.fireIterationPerformedEvent(evt); if (rnorm <= rmax) { manager.fireTerminationEvent(evt); return x; } } } }