/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.geometry.euclidean.twod;
import java.util.List;
import org.apache.commons.math3.fraction.BigFraction;
import org.apache.commons.math3.geometry.enclosing.EnclosingBall;
import org.apache.commons.math3.geometry.enclosing.SupportBallGenerator;
import org.apache.commons.math3.util.FastMath;
Class generating an enclosing ball from its support points.
Since: 3.3
/** Class generating an enclosing ball from its support points.
* @since 3.3
*/
public class DiskGenerator implements SupportBallGenerator<Euclidean2D, Vector2D> {
{@inheritDoc} /** {@inheritDoc} */
public EnclosingBall<Euclidean2D, Vector2D> ballOnSupport(final List<Vector2D> support) {
if (support.size() < 1) {
return new EnclosingBall<Euclidean2D, Vector2D>(Vector2D.ZERO, Double.NEGATIVE_INFINITY);
} else {
final Vector2D vA = support.get(0);
if (support.size() < 2) {
return new EnclosingBall<Euclidean2D, Vector2D>(vA, 0, vA);
} else {
final Vector2D vB = support.get(1);
if (support.size() < 3) {
return new EnclosingBall<Euclidean2D, Vector2D>(new Vector2D(0.5, vA, 0.5, vB),
0.5 * vA.distance(vB),
vA, vB);
} else {
final Vector2D vC = support.get(2);
// a disk is 2D can be defined as:
// (1) (x - x_0)^2 + (y - y_0)^2 = r^2
// which can be written:
// (2) (x^2 + y^2) - 2 x_0 x - 2 y_0 y + (x_0^2 + y_0^2 - r^2) = 0
// or simply:
// (3) (x^2 + y^2) + a x + b y + c = 0
// with disk center coordinates -a/2, -b/2
// If the disk exists, a, b and c are a non-zero solution to
// [ (x^2 + y^2 ) x y 1 ] [ 1 ] [ 0 ]
// [ (xA^2 + yA^2) xA yA 1 ] [ a ] [ 0 ]
// [ (xB^2 + yB^2) xB yB 1 ] * [ b ] = [ 0 ]
// [ (xC^2 + yC^2) xC yC 1 ] [ c ] [ 0 ]
// So the determinant of the matrix is zero. Computing this determinant
// by expanding it using the minors m_ij of first row leads to
// (4) m_11 (x^2 + y^2) - m_12 x + m_13 y - m_14 = 0
// So by identifying equations (2) and (4) we get the coordinates
// of center as:
// x_0 = +m_12 / (2 m_11)
// y_0 = -m_13 / (2 m_11)
// Note that the minors m_11, m_12 and m_13 all have the last column
// filled with 1.0, hence simplifying the computation
final BigFraction[] c2 = new BigFraction[] {
new BigFraction(vA.getX()), new BigFraction(vB.getX()), new BigFraction(vC.getX())
};
final BigFraction[] c3 = new BigFraction[] {
new BigFraction(vA.getY()), new BigFraction(vB.getY()), new BigFraction(vC.getY())
};
final BigFraction[] c1 = new BigFraction[] {
c2[0].multiply(c2[0]).add(c3[0].multiply(c3[0])),
c2[1].multiply(c2[1]).add(c3[1].multiply(c3[1])),
c2[2].multiply(c2[2]).add(c3[2].multiply(c3[2]))
};
final BigFraction twoM11 = minor(c2, c3).multiply(2);
final BigFraction m12 = minor(c1, c3);
final BigFraction m13 = minor(c1, c2);
final BigFraction centerX = m12.divide(twoM11);
final BigFraction centerY = m13.divide(twoM11).negate();
final BigFraction dx = c2[0].subtract(centerX);
final BigFraction dy = c3[0].subtract(centerY);
final BigFraction r2 = dx.multiply(dx).add(dy.multiply(dy));
return new EnclosingBall<Euclidean2D, Vector2D>(new Vector2D(centerX.doubleValue(),
centerY.doubleValue()),
FastMath.sqrt(r2.doubleValue()),
vA, vB, vC);
}
}
}
}
Compute a dimension 3 minor, when 3d column is known to be filled with 1.0.
Params: - c1 – first column
- c2 – second column
Returns: value of the minor computed has an exact fraction
/** Compute a dimension 3 minor, when 3<sup>d</sup> column is known to be filled with 1.0.
* @param c1 first column
* @param c2 second column
* @return value of the minor computed has an exact fraction
*/
private BigFraction minor(final BigFraction[] c1, final BigFraction[] c2) {
return c2[0].multiply(c1[2].subtract(c1[1])).
add(c2[1].multiply(c1[0].subtract(c1[2]))).
add(c2[2].multiply(c1[1].subtract(c1[0])));
}
}