/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.geometry.euclidean.threed;
import java.io.Serializable;
import org.apache.commons.math3.util.FastMath;
This class provides conversions related to spherical coordinates.
The conventions used here are the mathematical ones, i.e. spherical coordinates are
related to Cartesian coordinates as follows:
- x = r cos(θ) sin(Φ)
- y = r sin(θ) sin(Φ)
- z = r cos(Φ)
- r = √(x2+y2+z2)
- θ = atan2(y, x)
- Φ = acos(z/r)
r is the radius, θ is the azimuthal angle in the x-y plane and Φ is the polar
(co-latitude) angle. These conventions are different from the conventions used
in physics (and in particular in spherical harmonics) where the meanings of θ and
Φ are reversed.
This class provides conversion of coordinates and also of gradient and Hessian
between spherical and Cartesian coordinates.
Since: 3.2
/** This class provides conversions related to <a
* href="http://mathworld.wolfram.com/SphericalCoordinates.html">spherical coordinates</a>.
* <p>
* The conventions used here are the mathematical ones, i.e. spherical coordinates are
* related to Cartesian coordinates as follows:
* </p>
* <ul>
* <li>x = r cos(θ) sin(Φ)</li>
* <li>y = r sin(θ) sin(Φ)</li>
* <li>z = r cos(Φ)</li>
* </ul>
* <ul>
* <li>r = √(x<sup>2</sup>+y<sup>2</sup>+z<sup>2</sup>)</li>
* <li>θ = atan2(y, x)</li>
* <li>Φ = acos(z/r)</li>
* </ul>
* <p>
* r is the radius, θ is the azimuthal angle in the x-y plane and Φ is the polar
* (co-latitude) angle. These conventions are <em>different</em> from the conventions used
* in physics (and in particular in spherical harmonics) where the meanings of θ and
* Φ are reversed.
* </p>
* <p>
* This class provides conversion of coordinates and also of gradient and Hessian
* between spherical and Cartesian coordinates.
* </p>
* @since 3.2
*/
public class SphericalCoordinates implements Serializable {
Serializable UID. /** Serializable UID. */
private static final long serialVersionUID = 20130206L;
Cartesian coordinates. /** Cartesian coordinates. */
private final Vector3D v;
Radius. /** Radius. */
private final double r;
Azimuthal angle in the x-y plane θ. /** Azimuthal angle in the x-y plane θ. */
private final double theta;
Polar angle (co-latitude) Φ. /** Polar angle (co-latitude) Φ. */
private final double phi;
Jacobian of (r, θ &Phi). /** Jacobian of (r, θ &Phi). */
private double[][] jacobian;
Hessian of radius. /** Hessian of radius. */
private double[][] rHessian;
Hessian of azimuthal angle in the x-y plane θ. /** Hessian of azimuthal angle in the x-y plane θ. */
private double[][] thetaHessian;
Hessian of polar (co-latitude) angle Φ. /** Hessian of polar (co-latitude) angle Φ. */
private double[][] phiHessian;
Build a spherical coordinates transformer from Cartesian coordinates.
Params: - v – Cartesian coordinates
/** Build a spherical coordinates transformer from Cartesian coordinates.
* @param v Cartesian coordinates
*/
public SphericalCoordinates(final Vector3D v) {
// Cartesian coordinates
this.v = v;
// remaining spherical coordinates
this.r = v.getNorm();
this.theta = v.getAlpha();
this.phi = FastMath.acos(v.getZ() / r);
}
Build a spherical coordinates transformer from spherical coordinates.
Params: - r – radius
- theta – azimuthal angle in x-y plane
- phi – polar (co-latitude) angle
/** Build a spherical coordinates transformer from spherical coordinates.
* @param r radius
* @param theta azimuthal angle in x-y plane
* @param phi polar (co-latitude) angle
*/
public SphericalCoordinates(final double r, final double theta, final double phi) {
final double cosTheta = FastMath.cos(theta);
final double sinTheta = FastMath.sin(theta);
final double cosPhi = FastMath.cos(phi);
final double sinPhi = FastMath.sin(phi);
// spherical coordinates
this.r = r;
this.theta = theta;
this.phi = phi;
// Cartesian coordinates
this.v = new Vector3D(r * cosTheta * sinPhi,
r * sinTheta * sinPhi,
r * cosPhi);
}
Get the Cartesian coordinates.
Returns: Cartesian coordinates
/** Get the Cartesian coordinates.
* @return Cartesian coordinates
*/
public Vector3D getCartesian() {
return v;
}
Get the radius.
See Also: Returns: radius r
/** Get the radius.
* @return radius r
* @see #getTheta()
* @see #getPhi()
*/
public double getR() {
return r;
}
Get the azimuthal angle in x-y plane.
See Also: Returns: azimuthal angle in x-y plane θ
/** Get the azimuthal angle in x-y plane.
* @return azimuthal angle in x-y plane θ
* @see #getR()
* @see #getPhi()
*/
public double getTheta() {
return theta;
}
Get the polar (co-latitude) angle.
See Also: Returns: polar (co-latitude) angle Φ
/** Get the polar (co-latitude) angle.
* @return polar (co-latitude) angle Φ
* @see #getR()
* @see #getTheta()
*/
public double getPhi() {
return phi;
}
Convert a gradient with respect to spherical coordinates into a gradient
with respect to Cartesian coordinates.
Params: - sGradient – gradient with respect to spherical coordinates
{df/dr, df/dθ, df/dΦ}
Returns: gradient with respect to Cartesian coordinates
{df/dx, df/dy, df/dz}
/** Convert a gradient with respect to spherical coordinates into a gradient
* with respect to Cartesian coordinates.
* @param sGradient gradient with respect to spherical coordinates
* {df/dr, df/dθ, df/dΦ}
* @return gradient with respect to Cartesian coordinates
* {df/dx, df/dy, df/dz}
*/
public double[] toCartesianGradient(final double[] sGradient) {
// lazy evaluation of Jacobian
computeJacobian();
// compose derivatives as gradient^T . J
// the expressions have been simplified since we know jacobian[1][2] = dTheta/dZ = 0
return new double[] {
sGradient[0] * jacobian[0][0] + sGradient[1] * jacobian[1][0] + sGradient[2] * jacobian[2][0],
sGradient[0] * jacobian[0][1] + sGradient[1] * jacobian[1][1] + sGradient[2] * jacobian[2][1],
sGradient[0] * jacobian[0][2] + sGradient[2] * jacobian[2][2]
};
}
Convert a Hessian with respect to spherical coordinates into a Hessian
with respect to Cartesian coordinates.
As Hessian are always symmetric, we use only the lower left part of the provided
spherical Hessian, so the upper part may not be initialized. However, we still
do fill up the complete array we create, with guaranteed symmetry.
Params: - sHessian – Hessian with respect to spherical coordinates
{{d2f/dr2, d2f/drdθ, d2f/drdΦ},
{d2f/drdθ, d2f/dθ2, d2f/dθdΦ},
{d2f/drdΦ, d2f/dθdΦ, d2f/dΦ2}
- sGradient – gradient with respect to spherical coordinates
{df/dr, df/dθ, df/dΦ}
Returns: Hessian with respect to Cartesian coordinates
{{d2f/dx2, d2f/dxdy, d2f/dxdz},
{d2f/dxdy, d2f/dy2, d2f/dydz},
{d2f/dxdz, d2f/dydz, d2f/dz2}}
/** Convert a Hessian with respect to spherical coordinates into a Hessian
* with respect to Cartesian coordinates.
* <p>
* As Hessian are always symmetric, we use only the lower left part of the provided
* spherical Hessian, so the upper part may not be initialized. However, we still
* do fill up the complete array we create, with guaranteed symmetry.
* </p>
* @param sHessian Hessian with respect to spherical coordinates
* {{d<sup>2</sup>f/dr<sup>2</sup>, d<sup>2</sup>f/drdθ, d<sup>2</sup>f/drdΦ},
* {d<sup>2</sup>f/drdθ, d<sup>2</sup>f/dθ<sup>2</sup>, d<sup>2</sup>f/dθdΦ},
* {d<sup>2</sup>f/drdΦ, d<sup>2</sup>f/dθdΦ, d<sup>2</sup>f/dΦ<sup>2</sup>}
* @param sGradient gradient with respect to spherical coordinates
* {df/dr, df/dθ, df/dΦ}
* @return Hessian with respect to Cartesian coordinates
* {{d<sup>2</sup>f/dx<sup>2</sup>, d<sup>2</sup>f/dxdy, d<sup>2</sup>f/dxdz},
* {d<sup>2</sup>f/dxdy, d<sup>2</sup>f/dy<sup>2</sup>, d<sup>2</sup>f/dydz},
* {d<sup>2</sup>f/dxdz, d<sup>2</sup>f/dydz, d<sup>2</sup>f/dz<sup>2</sup>}}
*/
public double[][] toCartesianHessian(final double[][] sHessian, final double[] sGradient) {
computeJacobian();
computeHessians();
// compose derivative as J^T . H_f . J + df/dr H_r + df/dtheta H_theta + df/dphi H_phi
// the expressions have been simplified since we know jacobian[1][2] = dTheta/dZ = 0
// and H_theta is only a 2x2 matrix as it does not depend on z
final double[][] hj = new double[3][3];
final double[][] cHessian = new double[3][3];
// compute H_f . J
// beware we use ONLY the lower-left part of sHessian
hj[0][0] = sHessian[0][0] * jacobian[0][0] + sHessian[1][0] * jacobian[1][0] + sHessian[2][0] * jacobian[2][0];
hj[0][1] = sHessian[0][0] * jacobian[0][1] + sHessian[1][0] * jacobian[1][1] + sHessian[2][0] * jacobian[2][1];
hj[0][2] = sHessian[0][0] * jacobian[0][2] + sHessian[2][0] * jacobian[2][2];
hj[1][0] = sHessian[1][0] * jacobian[0][0] + sHessian[1][1] * jacobian[1][0] + sHessian[2][1] * jacobian[2][0];
hj[1][1] = sHessian[1][0] * jacobian[0][1] + sHessian[1][1] * jacobian[1][1] + sHessian[2][1] * jacobian[2][1];
// don't compute hj[1][2] as it is not used below
hj[2][0] = sHessian[2][0] * jacobian[0][0] + sHessian[2][1] * jacobian[1][0] + sHessian[2][2] * jacobian[2][0];
hj[2][1] = sHessian[2][0] * jacobian[0][1] + sHessian[2][1] * jacobian[1][1] + sHessian[2][2] * jacobian[2][1];
hj[2][2] = sHessian[2][0] * jacobian[0][2] + sHessian[2][2] * jacobian[2][2];
// compute lower-left part of J^T . H_f . J
cHessian[0][0] = jacobian[0][0] * hj[0][0] + jacobian[1][0] * hj[1][0] + jacobian[2][0] * hj[2][0];
cHessian[1][0] = jacobian[0][1] * hj[0][0] + jacobian[1][1] * hj[1][0] + jacobian[2][1] * hj[2][0];
cHessian[2][0] = jacobian[0][2] * hj[0][0] + jacobian[2][2] * hj[2][0];
cHessian[1][1] = jacobian[0][1] * hj[0][1] + jacobian[1][1] * hj[1][1] + jacobian[2][1] * hj[2][1];
cHessian[2][1] = jacobian[0][2] * hj[0][1] + jacobian[2][2] * hj[2][1];
cHessian[2][2] = jacobian[0][2] * hj[0][2] + jacobian[2][2] * hj[2][2];
// add gradient contribution
cHessian[0][0] += sGradient[0] * rHessian[0][0] + sGradient[1] * thetaHessian[0][0] + sGradient[2] * phiHessian[0][0];
cHessian[1][0] += sGradient[0] * rHessian[1][0] + sGradient[1] * thetaHessian[1][0] + sGradient[2] * phiHessian[1][0];
cHessian[2][0] += sGradient[0] * rHessian[2][0] + sGradient[2] * phiHessian[2][0];
cHessian[1][1] += sGradient[0] * rHessian[1][1] + sGradient[1] * thetaHessian[1][1] + sGradient[2] * phiHessian[1][1];
cHessian[2][1] += sGradient[0] * rHessian[2][1] + sGradient[2] * phiHessian[2][1];
cHessian[2][2] += sGradient[0] * rHessian[2][2] + sGradient[2] * phiHessian[2][2];
// ensure symmetry
cHessian[0][1] = cHessian[1][0];
cHessian[0][2] = cHessian[2][0];
cHessian[1][2] = cHessian[2][1];
return cHessian;
}
Lazy evaluation of (r, θ, φ) Jacobian.
/** Lazy evaluation of (r, θ, φ) Jacobian.
*/
private void computeJacobian() {
if (jacobian == null) {
// intermediate variables
final double x = v.getX();
final double y = v.getY();
final double z = v.getZ();
final double rho2 = x * x + y * y;
final double rho = FastMath.sqrt(rho2);
final double r2 = rho2 + z * z;
jacobian = new double[3][3];
// row representing the gradient of r
jacobian[0][0] = x / r;
jacobian[0][1] = y / r;
jacobian[0][2] = z / r;
// row representing the gradient of theta
jacobian[1][0] = -y / rho2;
jacobian[1][1] = x / rho2;
// jacobian[1][2] is already set to 0 at allocation time
// row representing the gradient of phi
jacobian[2][0] = x * z / (rho * r2);
jacobian[2][1] = y * z / (rho * r2);
jacobian[2][2] = -rho / r2;
}
}
Lazy evaluation of Hessians.
/** Lazy evaluation of Hessians.
*/
private void computeHessians() {
if (rHessian == null) {
// intermediate variables
final double x = v.getX();
final double y = v.getY();
final double z = v.getZ();
final double x2 = x * x;
final double y2 = y * y;
final double z2 = z * z;
final double rho2 = x2 + y2;
final double rho = FastMath.sqrt(rho2);
final double r2 = rho2 + z2;
final double xOr = x / r;
final double yOr = y / r;
final double zOr = z / r;
final double xOrho2 = x / rho2;
final double yOrho2 = y / rho2;
final double xOr3 = xOr / r2;
final double yOr3 = yOr / r2;
final double zOr3 = zOr / r2;
// lower-left part of Hessian of r
rHessian = new double[3][3];
rHessian[0][0] = y * yOr3 + z * zOr3;
rHessian[1][0] = -x * yOr3;
rHessian[2][0] = -z * xOr3;
rHessian[1][1] = x * xOr3 + z * zOr3;
rHessian[2][1] = -y * zOr3;
rHessian[2][2] = x * xOr3 + y * yOr3;
// upper-right part is symmetric
rHessian[0][1] = rHessian[1][0];
rHessian[0][2] = rHessian[2][0];
rHessian[1][2] = rHessian[2][1];
// lower-left part of Hessian of azimuthal angle theta
thetaHessian = new double[2][2];
thetaHessian[0][0] = 2 * xOrho2 * yOrho2;
thetaHessian[1][0] = yOrho2 * yOrho2 - xOrho2 * xOrho2;
thetaHessian[1][1] = -2 * xOrho2 * yOrho2;
// upper-right part is symmetric
thetaHessian[0][1] = thetaHessian[1][0];
// lower-left part of Hessian of polar (co-latitude) angle phi
final double rhor2 = rho * r2;
final double rho2r2 = rho * rhor2;
final double rhor4 = rhor2 * r2;
final double rho3r4 = rhor4 * rho2;
final double r2P2rho2 = 3 * rho2 + z2;
phiHessian = new double[3][3];
phiHessian[0][0] = z * (rho2r2 - x2 * r2P2rho2) / rho3r4;
phiHessian[1][0] = -x * y * z * r2P2rho2 / rho3r4;
phiHessian[2][0] = x * (rho2 - z2) / rhor4;
phiHessian[1][1] = z * (rho2r2 - y2 * r2P2rho2) / rho3r4;
phiHessian[2][1] = y * (rho2 - z2) / rhor4;
phiHessian[2][2] = 2 * rho * zOr3 / r;
// upper-right part is symmetric
phiHessian[0][1] = phiHessian[1][0];
phiHessian[0][2] = phiHessian[2][0];
phiHessian[1][2] = phiHessian[2][1];
}
}
Replace the instance with a data transfer object for serialization.
Returns: data transfer object that will be serialized
/**
* Replace the instance with a data transfer object for serialization.
* @return data transfer object that will be serialized
*/
private Object writeReplace() {
return new DataTransferObject(v.getX(), v.getY(), v.getZ());
}
Internal class used only for serialization. /** Internal class used only for serialization. */
private static class DataTransferObject implements Serializable {
Serializable UID. /** Serializable UID. */
private static final long serialVersionUID = 20130206L;
Abscissa.
@serial
/** Abscissa.
* @serial
*/
private final double x;
Ordinate.
@serial
/** Ordinate.
* @serial
*/
private final double y;
Height.
@serial
/** Height.
* @serial
*/
private final double z;
Simple constructor.
Params: - x – abscissa
- y – ordinate
- z – height
/** Simple constructor.
* @param x abscissa
* @param y ordinate
* @param z height
*/
DataTransferObject(final double x, final double y, final double z) {
this.x = x;
this.y = y;
this.z = z;
}
Replace the deserialized data transfer object with a SphericalCoordinates
. Returns: replacement SphericalCoordinates
/** Replace the deserialized data transfer object with a {@link SphericalCoordinates}.
* @return replacement {@link SphericalCoordinates}
*/
private Object readResolve() {
return new SphericalCoordinates(new Vector3D(x, y, z));
}
}
}