/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.distribution;

import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.OutOfRangeException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.random.Well19937c;
import org.apache.commons.math3.util.CombinatoricsUtils;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.ResizableDoubleArray;

Implementation of the exponential distribution.
See Also:
/** * Implementation of the exponential distribution. * * @see <a href="http://en.wikipedia.org/wiki/Exponential_distribution">Exponential distribution (Wikipedia)</a> * @see <a href="http://mathworld.wolfram.com/ExponentialDistribution.html">Exponential distribution (MathWorld)</a> */
public class ExponentialDistribution extends AbstractRealDistribution {
Default inverse cumulative probability accuracy.
Since:2.1
/** * Default inverse cumulative probability accuracy. * @since 2.1 */
public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
Serializable version identifier
/** Serializable version identifier */
private static final long serialVersionUID = 2401296428283614780L;
Used when generating Exponential samples. Table containing the constants q_i = sum_{j=1}^i (ln 2)^j/j! = ln 2 + (ln 2)^2/2 + ... + (ln 2)^i/i! until the largest representable fraction below 1 is exceeded. Note that 1 = 2 - 1 = exp(ln 2) - 1 = sum_{n=1}^infty (ln 2)^n / n! thus q_i -> 1 as i -> +inf, so the higher i, the closer to one we get (the series is not alternating). By trying, n = 16 in Java is enough to reach 1.0.
/** * Used when generating Exponential samples. * Table containing the constants * q_i = sum_{j=1}^i (ln 2)^j/j! = ln 2 + (ln 2)^2/2 + ... + (ln 2)^i/i! * until the largest representable fraction below 1 is exceeded. * * Note that * 1 = 2 - 1 = exp(ln 2) - 1 = sum_{n=1}^infty (ln 2)^n / n! * thus q_i -> 1 as i -> +inf, * so the higher i, the closer to one we get (the series is not alternating). * * By trying, n = 16 in Java is enough to reach 1.0. */
private static final double[] EXPONENTIAL_SA_QI;
The mean of this distribution.
/** The mean of this distribution. */
private final double mean;
The logarithm of the mean, stored to reduce computing time.
/** The logarithm of the mean, stored to reduce computing time. **/
private final double logMean;
Inverse cumulative probability accuracy.
/** Inverse cumulative probability accuracy. */
private final double solverAbsoluteAccuracy;
Initialize tables.
/** * Initialize tables. */
static { /** * Filling EXPONENTIAL_SA_QI table. * Note that we don't want qi = 0 in the table. */ final double LN2 = FastMath.log(2); double qi = 0; int i = 1; /** * ArithmeticUtils provides factorials up to 20, so let's use that * limit together with Precision.EPSILON to generate the following * code (a priori, we know that there will be 16 elements, but it is * better to not hardcode it). */ final ResizableDoubleArray ra = new ResizableDoubleArray(20); while (qi < 1) { qi += FastMath.pow(LN2, i) / CombinatoricsUtils.factorial(i); ra.addElement(qi); ++i; } EXPONENTIAL_SA_QI = ra.getElements(); }
Create an exponential distribution with the given mean.

Note: this constructor will implicitly create an instance of Well19937c as random generator to be used for sampling only (see sample() and AbstractRealDistribution.sample(int)). In case no sampling is needed for the created distribution, it is advised to pass null as random generator via the appropriate constructors to avoid the additional initialisation overhead.

Params:
  • mean – mean of this distribution.
/** * Create an exponential distribution with the given mean. * <p> * <b>Note:</b> this constructor will implicitly create an instance of * {@link Well19937c} as random generator to be used for sampling only (see * {@link #sample()} and {@link #sample(int)}). In case no sampling is * needed for the created distribution, it is advised to pass {@code null} * as random generator via the appropriate constructors to avoid the * additional initialisation overhead. * * @param mean mean of this distribution. */
public ExponentialDistribution(double mean) { this(mean, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); }
Create an exponential distribution with the given mean.

Note: this constructor will implicitly create an instance of Well19937c as random generator to be used for sampling only (see sample() and AbstractRealDistribution.sample(int)). In case no sampling is needed for the created distribution, it is advised to pass null as random generator via the appropriate constructors to avoid the additional initialisation overhead.

Params:
  • mean – Mean of this distribution.
  • inverseCumAccuracy – Maximum absolute error in inverse cumulative probability estimates (defaults to DEFAULT_INVERSE_ABSOLUTE_ACCURACY).
Throws:
Since:2.1
/** * Create an exponential distribution with the given mean. * <p> * <b>Note:</b> this constructor will implicitly create an instance of * {@link Well19937c} as random generator to be used for sampling only (see * {@link #sample()} and {@link #sample(int)}). In case no sampling is * needed for the created distribution, it is advised to pass {@code null} * as random generator via the appropriate constructors to avoid the * additional initialisation overhead. * * @param mean Mean of this distribution. * @param inverseCumAccuracy Maximum absolute error in inverse * cumulative probability estimates (defaults to * {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}). * @throws NotStrictlyPositiveException if {@code mean <= 0}. * @since 2.1 */
public ExponentialDistribution(double mean, double inverseCumAccuracy) { this(new Well19937c(), mean, inverseCumAccuracy); }
Creates an exponential distribution.
Params:
  • rng – Random number generator.
  • mean – Mean of this distribution.
Throws:
Since:3.3
/** * Creates an exponential distribution. * * @param rng Random number generator. * @param mean Mean of this distribution. * @throws NotStrictlyPositiveException if {@code mean <= 0}. * @since 3.3 */
public ExponentialDistribution(RandomGenerator rng, double mean) throws NotStrictlyPositiveException { this(rng, mean, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); }
Creates an exponential distribution.
Params:
  • rng – Random number generator.
  • mean – Mean of this distribution.
  • inverseCumAccuracy – Maximum absolute error in inverse cumulative probability estimates (defaults to DEFAULT_INVERSE_ABSOLUTE_ACCURACY).
Throws:
Since:3.1
/** * Creates an exponential distribution. * * @param rng Random number generator. * @param mean Mean of this distribution. * @param inverseCumAccuracy Maximum absolute error in inverse * cumulative probability estimates (defaults to * {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}). * @throws NotStrictlyPositiveException if {@code mean <= 0}. * @since 3.1 */
public ExponentialDistribution(RandomGenerator rng, double mean, double inverseCumAccuracy) throws NotStrictlyPositiveException { super(rng); if (mean <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.MEAN, mean); } this.mean = mean; logMean = FastMath.log(mean); solverAbsoluteAccuracy = inverseCumAccuracy; }
Access the mean.
Returns:the mean.
/** * Access the mean. * * @return the mean. */
public double getMean() { return mean; }
{@inheritDoc}
/** {@inheritDoc} */
public double density(double x) { final double logDensity = logDensity(x); return logDensity == Double.NEGATIVE_INFINITY ? 0 : FastMath.exp(logDensity); }
{@inheritDoc}
/** {@inheritDoc} **/
@Override public double logDensity(double x) { if (x < 0) { return Double.NEGATIVE_INFINITY; } return -x / mean - logMean; }
{@inheritDoc} The implementation of this method is based on:
/** * {@inheritDoc} * * The implementation of this method is based on: * <ul> * <li> * <a href="http://mathworld.wolfram.com/ExponentialDistribution.html"> * Exponential Distribution</a>, equation (1).</li> * </ul> */
public double cumulativeProbability(double x) { double ret; if (x <= 0.0) { ret = 0.0; } else { ret = 1.0 - FastMath.exp(-x / mean); } return ret; }
{@inheritDoc} Returns 0 when p= = 0 and Double.POSITIVE_INFINITY when p == 1.
/** * {@inheritDoc} * * Returns {@code 0} when {@code p= = 0} and * {@code Double.POSITIVE_INFINITY} when {@code p == 1}. */
@Override public double inverseCumulativeProbability(double p) throws OutOfRangeException { double ret; if (p < 0.0 || p > 1.0) { throw new OutOfRangeException(p, 0.0, 1.0); } else if (p == 1.0) { ret = Double.POSITIVE_INFINITY; } else { ret = -mean * FastMath.log(1.0 - p); } return ret; }
{@inheritDoc}

Algorithm Description: this implementation uses the Inversion Method to generate exponentially distributed random values from uniform deviates.

Returns:a random value.
Since:2.2
/** * {@inheritDoc} * * <p><strong>Algorithm Description</strong>: this implementation uses the * <a href="http://www.jesus.ox.ac.uk/~clifford/a5/chap1/node5.html"> * Inversion Method</a> to generate exponentially distributed random values * from uniform deviates.</p> * * @return a random value. * @since 2.2 */
@Override public double sample() { // Step 1: double a = 0; double u = random.nextDouble(); // Step 2 and 3: while (u < 0.5) { a += EXPONENTIAL_SA_QI[0]; u *= 2; } // Step 4 (now u >= 0.5): u += u - 1; // Step 5: if (u <= EXPONENTIAL_SA_QI[0]) { return mean * (a + u); } // Step 6: int i = 0; // Should be 1, be we iterate before it in while using 0 double u2 = random.nextDouble(); double umin = u2; // Step 7 and 8: do { ++i; u2 = random.nextDouble(); if (u2 < umin) { umin = u2; } // Step 8: } while (u > EXPONENTIAL_SA_QI[i]); // Ensured to exit since EXPONENTIAL_SA_QI[MAX] = 1 return mean * (a + umin * EXPONENTIAL_SA_QI[0]); }
{@inheritDoc}
/** {@inheritDoc} */
@Override protected double getSolverAbsoluteAccuracy() { return solverAbsoluteAccuracy; }
{@inheritDoc} For mean parameter k, the mean is k.
/** * {@inheritDoc} * * For mean parameter {@code k}, the mean is {@code k}. */
public double getNumericalMean() { return getMean(); }
{@inheritDoc} For mean parameter k, the variance is k^2.
/** * {@inheritDoc} * * For mean parameter {@code k}, the variance is {@code k^2}. */
public double getNumericalVariance() { final double m = getMean(); return m * m; }
{@inheritDoc} The lower bound of the support is always 0 no matter the mean parameter.
Returns:lower bound of the support (always 0)
/** * {@inheritDoc} * * The lower bound of the support is always 0 no matter the mean parameter. * * @return lower bound of the support (always 0) */
public double getSupportLowerBound() { return 0; }
{@inheritDoc} The upper bound of the support is always positive infinity no matter the mean parameter.
Returns:upper bound of the support (always Double.POSITIVE_INFINITY)
/** * {@inheritDoc} * * The upper bound of the support is always positive infinity * no matter the mean parameter. * * @return upper bound of the support (always Double.POSITIVE_INFINITY) */
public double getSupportUpperBound() { return Double.POSITIVE_INFINITY; }
{@inheritDoc}
/** {@inheritDoc} */
public boolean isSupportLowerBoundInclusive() { return true; }
{@inheritDoc}
/** {@inheritDoc} */
public boolean isSupportUpperBoundInclusive() { return false; }
{@inheritDoc} The support of this distribution is connected.
Returns:true
/** * {@inheritDoc} * * The support of this distribution is connected. * * @return {@code true} */
public boolean isSupportConnected() { return true; } }