/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.analysis.solvers;

import org.apache.commons.math3.analysis.DifferentiableUnivariateFunction;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.exception.TooManyEvaluationsException;

Implements Newton's Method for finding zeros of real univariate functions.

The function should be continuous but not necessarily smooth.

Deprecated:as of 3.1, replaced by NewtonRaphsonSolver
/** * Implements <a href="http://mathworld.wolfram.com/NewtonsMethod.html"> * Newton's Method</a> for finding zeros of real univariate functions. * <p> * The function should be continuous but not necessarily smooth.</p> * * @deprecated as of 3.1, replaced by {@link NewtonRaphsonSolver} */
@Deprecated public class NewtonSolver extends AbstractDifferentiableUnivariateSolver {
Default absolute accuracy.
/** Default absolute accuracy. */
private static final double DEFAULT_ABSOLUTE_ACCURACY = 1e-6;
Construct a solver.
/** * Construct a solver. */
public NewtonSolver() { this(DEFAULT_ABSOLUTE_ACCURACY); }
Construct a solver.
Params:
  • absoluteAccuracy – Absolute accuracy.
/** * Construct a solver. * * @param absoluteAccuracy Absolute accuracy. */
public NewtonSolver(double absoluteAccuracy) { super(absoluteAccuracy); }
Find a zero near the midpoint of min and max.
Params:
  • f – Function to solve.
  • min – Lower bound for the interval.
  • max – Upper bound for the interval.
  • maxEval – Maximum number of evaluations.
Throws:
Returns:the value where the function is zero.
/** * Find a zero near the midpoint of {@code min} and {@code max}. * * @param f Function to solve. * @param min Lower bound for the interval. * @param max Upper bound for the interval. * @param maxEval Maximum number of evaluations. * @return the value where the function is zero. * @throws org.apache.commons.math3.exception.TooManyEvaluationsException * if the maximum evaluation count is exceeded. * @throws org.apache.commons.math3.exception.NumberIsTooLargeException * if {@code min >= max}. */
@Override public double solve(int maxEval, final DifferentiableUnivariateFunction f, final double min, final double max) throws TooManyEvaluationsException { return super.solve(maxEval, f, UnivariateSolverUtils.midpoint(min, max)); }
{@inheritDoc}
/** * {@inheritDoc} */
@Override protected double doSolve() throws TooManyEvaluationsException { final double startValue = getStartValue(); final double absoluteAccuracy = getAbsoluteAccuracy(); double x0 = startValue; double x1; while (true) { x1 = x0 - (computeObjectiveValue(x0) / computeDerivativeObjectiveValue(x0)); if (FastMath.abs(x1 - x0) <= absoluteAccuracy) { return x1; } x0 = x1; } } }