/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.analysis.solvers;

import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.analysis.UnivariateFunction;
import org.apache.commons.math3.exception.ConvergenceException;
import org.apache.commons.math3.exception.MathInternalError;

Base class for all bracketing Secant-based methods for root-finding (approximating a zero of a univariate real function).

Implementation of the Regula Falsi and Illinois methods is based on the following article: M. Dowell and P. Jarratt, A modified regula falsi method for computing the root of an equation, BIT Numerical Mathematics, volume 11, number 2, pages 168-174, Springer, 1971.

Implementation of the Pegasus method is based on the following article: M. Dowell and P. Jarratt, The "Pegasus" method for computing the root of an equation, BIT Numerical Mathematics, volume 12, number 4, pages 503-508, Springer, 1972.

The Secant method is not a bracketing method, so it is not implemented here. It has a separate implementation.

Since:3.0
/** * Base class for all bracketing <em>Secant</em>-based methods for root-finding * (approximating a zero of a univariate real function). * * <p>Implementation of the {@link RegulaFalsiSolver <em>Regula Falsi</em>} and * {@link IllinoisSolver <em>Illinois</em>} methods is based on the * following article: M. Dowell and P. Jarratt, * <em>A modified regula falsi method for computing the root of an * equation</em>, BIT Numerical Mathematics, volume 11, number 2, * pages 168-174, Springer, 1971.</p> * * <p>Implementation of the {@link PegasusSolver <em>Pegasus</em>} method is * based on the following article: M. Dowell and P. Jarratt, * <em>The "Pegasus" method for computing the root of an equation</em>, * BIT Numerical Mathematics, volume 12, number 4, pages 503-508, Springer, * 1972.</p> * * <p>The {@link SecantSolver <em>Secant</em>} method is <em>not</em> a * bracketing method, so it is not implemented here. It has a separate * implementation.</p> * * @since 3.0 */
public abstract class BaseSecantSolver extends AbstractUnivariateSolver implements BracketedUnivariateSolver<UnivariateFunction> {
Default absolute accuracy.
/** Default absolute accuracy. */
protected static final double DEFAULT_ABSOLUTE_ACCURACY = 1e-6;
The kinds of solutions that the algorithm may accept.
/** The kinds of solutions that the algorithm may accept. */
private AllowedSolution allowed;
The Secant-based root-finding method to use.
/** The <em>Secant</em>-based root-finding method to use. */
private final Method method;
Construct a solver.
Params:
  • absoluteAccuracy – Absolute accuracy.
  • method – Secant-based root-finding method to use.
/** * Construct a solver. * * @param absoluteAccuracy Absolute accuracy. * @param method <em>Secant</em>-based root-finding method to use. */
protected BaseSecantSolver(final double absoluteAccuracy, final Method method) { super(absoluteAccuracy); this.allowed = AllowedSolution.ANY_SIDE; this.method = method; }
Construct a solver.
Params:
  • relativeAccuracy – Relative accuracy.
  • absoluteAccuracy – Absolute accuracy.
  • method – Secant-based root-finding method to use.
/** * Construct a solver. * * @param relativeAccuracy Relative accuracy. * @param absoluteAccuracy Absolute accuracy. * @param method <em>Secant</em>-based root-finding method to use. */
protected BaseSecantSolver(final double relativeAccuracy, final double absoluteAccuracy, final Method method) { super(relativeAccuracy, absoluteAccuracy); this.allowed = AllowedSolution.ANY_SIDE; this.method = method; }
Construct a solver.
Params:
  • relativeAccuracy – Maximum relative error.
  • absoluteAccuracy – Maximum absolute error.
  • functionValueAccuracy – Maximum function value error.
  • method – Secant-based root-finding method to use
/** * Construct a solver. * * @param relativeAccuracy Maximum relative error. * @param absoluteAccuracy Maximum absolute error. * @param functionValueAccuracy Maximum function value error. * @param method <em>Secant</em>-based root-finding method to use */
protected BaseSecantSolver(final double relativeAccuracy, final double absoluteAccuracy, final double functionValueAccuracy, final Method method) { super(relativeAccuracy, absoluteAccuracy, functionValueAccuracy); this.allowed = AllowedSolution.ANY_SIDE; this.method = method; }
{@inheritDoc}
/** {@inheritDoc} */
public double solve(final int maxEval, final UnivariateFunction f, final double min, final double max, final AllowedSolution allowedSolution) { return solve(maxEval, f, min, max, min + 0.5 * (max - min), allowedSolution); }
{@inheritDoc}
/** {@inheritDoc} */
public double solve(final int maxEval, final UnivariateFunction f, final double min, final double max, final double startValue, final AllowedSolution allowedSolution) { this.allowed = allowedSolution; return super.solve(maxEval, f, min, max, startValue); }
{@inheritDoc}
/** {@inheritDoc} */
@Override public double solve(final int maxEval, final UnivariateFunction f, final double min, final double max, final double startValue) { return solve(maxEval, f, min, max, startValue, AllowedSolution.ANY_SIDE); }
{@inheritDoc}
Throws:
/** * {@inheritDoc} * * @throws ConvergenceException if the algorithm failed due to finite * precision. */
@Override protected final double doSolve() throws ConvergenceException { // Get initial solution double x0 = getMin(); double x1 = getMax(); double f0 = computeObjectiveValue(x0); double f1 = computeObjectiveValue(x1); // If one of the bounds is the exact root, return it. Since these are // not under-approximations or over-approximations, we can return them // regardless of the allowed solutions. if (f0 == 0.0) { return x0; } if (f1 == 0.0) { return x1; } // Verify bracketing of initial solution. verifyBracketing(x0, x1); // Get accuracies. final double ftol = getFunctionValueAccuracy(); final double atol = getAbsoluteAccuracy(); final double rtol = getRelativeAccuracy(); // Keep track of inverted intervals, meaning that the left bound is // larger than the right bound. boolean inverted = false; // Keep finding better approximations. while (true) { // Calculate the next approximation. final double x = x1 - ((f1 * (x1 - x0)) / (f1 - f0)); final double fx = computeObjectiveValue(x); // If the new approximation is the exact root, return it. Since // this is not an under-approximation or an over-approximation, // we can return it regardless of the allowed solutions. if (fx == 0.0) { return x; } // Update the bounds with the new approximation. if (f1 * fx < 0) { // The value of x1 has switched to the other bound, thus inverting // the interval. x0 = x1; f0 = f1; inverted = !inverted; } else { switch (method) { case ILLINOIS: f0 *= 0.5; break; case PEGASUS: f0 *= f1 / (f1 + fx); break; case REGULA_FALSI: // Detect early that algorithm is stuck, instead of waiting // for the maximum number of iterations to be exceeded. if (x == x1) { throw new ConvergenceException(); } break; default: // Should never happen. throw new MathInternalError(); } } // Update from [x0, x1] to [x0, x]. x1 = x; f1 = fx; // If the function value of the last approximation is too small, // given the function value accuracy, then we can't get closer to // the root than we already are. if (FastMath.abs(f1) <= ftol) { switch (allowed) { case ANY_SIDE: return x1; case LEFT_SIDE: if (inverted) { return x1; } break; case RIGHT_SIDE: if (!inverted) { return x1; } break; case BELOW_SIDE: if (f1 <= 0) { return x1; } break; case ABOVE_SIDE: if (f1 >= 0) { return x1; } break; default: throw new MathInternalError(); } } // If the current interval is within the given accuracies, we // are satisfied with the current approximation. if (FastMath.abs(x1 - x0) < FastMath.max(rtol * FastMath.abs(x1), atol)) { switch (allowed) { case ANY_SIDE: return x1; case LEFT_SIDE: return inverted ? x1 : x0; case RIGHT_SIDE: return inverted ? x0 : x1; case BELOW_SIDE: return (f1 <= 0) ? x1 : x0; case ABOVE_SIDE: return (f1 >= 0) ? x1 : x0; default: throw new MathInternalError(); } } } }
Secant-based root-finding methods.
/** <em>Secant</em>-based root-finding methods. */
protected enum Method {
The Regula Falsi or False Position method.
/** * The {@link RegulaFalsiSolver <em>Regula Falsi</em>} or * <em>False Position</em> method. */
REGULA_FALSI,
The Illinois method.
/** The {@link IllinoisSolver <em>Illinois</em>} method. */
ILLINOIS,
The Pegasus method.
/** The {@link PegasusSolver <em>Pegasus</em>} method. */
PEGASUS; } }