/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.analysis.polynomials;
import java.io.Serializable;
import java.util.Arrays;
import org.apache.commons.math3.analysis.DifferentiableUnivariateFunction;
import org.apache.commons.math3.analysis.ParametricUnivariateFunction;
import org.apache.commons.math3.analysis.UnivariateFunction;
import org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
import org.apache.commons.math3.exception.NoDataException;
import org.apache.commons.math3.exception.NullArgumentException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.MathUtils;
Immutable representation of a real polynomial function with real coefficients.
Horner's Method
is used to evaluate the function.
/**
* Immutable representation of a real polynomial function with real coefficients.
* <p>
* <a href="http://mathworld.wolfram.com/HornersMethod.html">Horner's Method</a>
* is used to evaluate the function.</p>
*
*/
public class PolynomialFunction implements UnivariateDifferentiableFunction, DifferentiableUnivariateFunction, Serializable {
Serialization identifier
/**
* Serialization identifier
*/
private static final long serialVersionUID = -7726511984200295583L;
The coefficients of the polynomial, ordered by degree -- i.e.,
coefficients[0] is the constant term and coefficients[n] is the
coefficient of x^n where n is the degree of the polynomial.
/**
* The coefficients of the polynomial, ordered by degree -- i.e.,
* coefficients[0] is the constant term and coefficients[n] is the
* coefficient of x^n where n is the degree of the polynomial.
*/
private final double coefficients[];
Construct a polynomial with the given coefficients. The first element
of the coefficients array is the constant term. Higher degree
coefficients follow in sequence. The degree of the resulting polynomial
is the index of the last non-null element of the array, or 0 if all elements
are null.
The constructor makes a copy of the input array and assigns the copy to
the coefficients property.
Params: - c – Polynomial coefficients.
Throws: - NullArgumentException – if
c
is null
. - NoDataException – if
c
is empty.
/**
* Construct a polynomial with the given coefficients. The first element
* of the coefficients array is the constant term. Higher degree
* coefficients follow in sequence. The degree of the resulting polynomial
* is the index of the last non-null element of the array, or 0 if all elements
* are null.
* <p>
* The constructor makes a copy of the input array and assigns the copy to
* the coefficients property.</p>
*
* @param c Polynomial coefficients.
* @throws NullArgumentException if {@code c} is {@code null}.
* @throws NoDataException if {@code c} is empty.
*/
public PolynomialFunction(double c[])
throws NullArgumentException, NoDataException {
super();
MathUtils.checkNotNull(c);
int n = c.length;
if (n == 0) {
throw new NoDataException(LocalizedFormats.EMPTY_POLYNOMIALS_COEFFICIENTS_ARRAY);
}
while ((n > 1) && (c[n - 1] == 0)) {
--n;
}
this.coefficients = new double[n];
System.arraycopy(c, 0, this.coefficients, 0, n);
}
Compute the value of the function for the given argument.
The value returned is
coefficients[n] * x^n + ... + coefficients[1] * x + coefficients[0]
Params: - x – Argument for which the function value should be computed.
See Also: Returns: the value of the polynomial at the given point.
/**
* Compute the value of the function for the given argument.
* <p>
* The value returned is </p><p>
* {@code coefficients[n] * x^n + ... + coefficients[1] * x + coefficients[0]}
* </p>
*
* @param x Argument for which the function value should be computed.
* @return the value of the polynomial at the given point.
* @see UnivariateFunction#value(double)
*/
public double value(double x) {
return evaluate(coefficients, x);
}
Returns the degree of the polynomial.
Returns: the degree of the polynomial.
/**
* Returns the degree of the polynomial.
*
* @return the degree of the polynomial.
*/
public int degree() {
return coefficients.length - 1;
}
Returns a copy of the coefficients array.
Changes made to the returned copy will not affect the coefficients of
the polynomial.
Returns: a fresh copy of the coefficients array.
/**
* Returns a copy of the coefficients array.
* <p>
* Changes made to the returned copy will not affect the coefficients of
* the polynomial.</p>
*
* @return a fresh copy of the coefficients array.
*/
public double[] getCoefficients() {
return coefficients.clone();
}
Uses Horner's Method to evaluate the polynomial with the given coefficients at
the argument.
Params: - coefficients – Coefficients of the polynomial to evaluate.
- argument – Input value.
Throws: - NoDataException – if
coefficients
is empty. - NullArgumentException – if
coefficients
is null
.
Returns: the value of the polynomial.
/**
* Uses Horner's Method to evaluate the polynomial with the given coefficients at
* the argument.
*
* @param coefficients Coefficients of the polynomial to evaluate.
* @param argument Input value.
* @return the value of the polynomial.
* @throws NoDataException if {@code coefficients} is empty.
* @throws NullArgumentException if {@code coefficients} is {@code null}.
*/
protected static double evaluate(double[] coefficients, double argument)
throws NullArgumentException, NoDataException {
MathUtils.checkNotNull(coefficients);
int n = coefficients.length;
if (n == 0) {
throw new NoDataException(LocalizedFormats.EMPTY_POLYNOMIALS_COEFFICIENTS_ARRAY);
}
double result = coefficients[n - 1];
for (int j = n - 2; j >= 0; j--) {
result = argument * result + coefficients[j];
}
return result;
}
{@inheritDoc}
Throws: - NoDataException – if
coefficients
is empty. - NullArgumentException – if
coefficients
is null
.
Since: 3.1
/** {@inheritDoc}
* @since 3.1
* @throws NoDataException if {@code coefficients} is empty.
* @throws NullArgumentException if {@code coefficients} is {@code null}.
*/
public DerivativeStructure value(final DerivativeStructure t)
throws NullArgumentException, NoDataException {
MathUtils.checkNotNull(coefficients);
int n = coefficients.length;
if (n == 0) {
throw new NoDataException(LocalizedFormats.EMPTY_POLYNOMIALS_COEFFICIENTS_ARRAY);
}
DerivativeStructure result =
new DerivativeStructure(t.getFreeParameters(), t.getOrder(), coefficients[n - 1]);
for (int j = n - 2; j >= 0; j--) {
result = result.multiply(t).add(coefficients[j]);
}
return result;
}
Add a polynomial to the instance.
Params: - p – Polynomial to add.
Returns: a new polynomial which is the sum of the instance and p
.
/**
* Add a polynomial to the instance.
*
* @param p Polynomial to add.
* @return a new polynomial which is the sum of the instance and {@code p}.
*/
public PolynomialFunction add(final PolynomialFunction p) {
// identify the lowest degree polynomial
final int lowLength = FastMath.min(coefficients.length, p.coefficients.length);
final int highLength = FastMath.max(coefficients.length, p.coefficients.length);
// build the coefficients array
double[] newCoefficients = new double[highLength];
for (int i = 0; i < lowLength; ++i) {
newCoefficients[i] = coefficients[i] + p.coefficients[i];
}
System.arraycopy((coefficients.length < p.coefficients.length) ?
p.coefficients : coefficients,
lowLength,
newCoefficients, lowLength,
highLength - lowLength);
return new PolynomialFunction(newCoefficients);
}
Subtract a polynomial from the instance.
Params: - p – Polynomial to subtract.
Returns: a new polynomial which is the instance minus p
.
/**
* Subtract a polynomial from the instance.
*
* @param p Polynomial to subtract.
* @return a new polynomial which is the instance minus {@code p}.
*/
public PolynomialFunction subtract(final PolynomialFunction p) {
// identify the lowest degree polynomial
int lowLength = FastMath.min(coefficients.length, p.coefficients.length);
int highLength = FastMath.max(coefficients.length, p.coefficients.length);
// build the coefficients array
double[] newCoefficients = new double[highLength];
for (int i = 0; i < lowLength; ++i) {
newCoefficients[i] = coefficients[i] - p.coefficients[i];
}
if (coefficients.length < p.coefficients.length) {
for (int i = lowLength; i < highLength; ++i) {
newCoefficients[i] = -p.coefficients[i];
}
} else {
System.arraycopy(coefficients, lowLength, newCoefficients, lowLength,
highLength - lowLength);
}
return new PolynomialFunction(newCoefficients);
}
Negate the instance.
Returns: a new polynomial with all coefficients negated
/**
* Negate the instance.
*
* @return a new polynomial with all coefficients negated
*/
public PolynomialFunction negate() {
double[] newCoefficients = new double[coefficients.length];
for (int i = 0; i < coefficients.length; ++i) {
newCoefficients[i] = -coefficients[i];
}
return new PolynomialFunction(newCoefficients);
}
Multiply the instance by a polynomial.
Params: - p – Polynomial to multiply by.
Returns: a new polynomial equal to this times p
/**
* Multiply the instance by a polynomial.
*
* @param p Polynomial to multiply by.
* @return a new polynomial equal to this times {@code p}
*/
public PolynomialFunction multiply(final PolynomialFunction p) {
double[] newCoefficients = new double[coefficients.length + p.coefficients.length - 1];
for (int i = 0; i < newCoefficients.length; ++i) {
newCoefficients[i] = 0.0;
for (int j = FastMath.max(0, i + 1 - p.coefficients.length);
j < FastMath.min(coefficients.length, i + 1);
++j) {
newCoefficients[i] += coefficients[j] * p.coefficients[i-j];
}
}
return new PolynomialFunction(newCoefficients);
}
Returns the coefficients of the derivative of the polynomial with the given coefficients.
Params: - coefficients – Coefficients of the polynomial to differentiate.
Throws: - NoDataException – if
coefficients
is empty. - NullArgumentException – if
coefficients
is null
.
Returns: the coefficients of the derivative or null
if coefficients has length 1.
/**
* Returns the coefficients of the derivative of the polynomial with the given coefficients.
*
* @param coefficients Coefficients of the polynomial to differentiate.
* @return the coefficients of the derivative or {@code null} if coefficients has length 1.
* @throws NoDataException if {@code coefficients} is empty.
* @throws NullArgumentException if {@code coefficients} is {@code null}.
*/
protected static double[] differentiate(double[] coefficients)
throws NullArgumentException, NoDataException {
MathUtils.checkNotNull(coefficients);
int n = coefficients.length;
if (n == 0) {
throw new NoDataException(LocalizedFormats.EMPTY_POLYNOMIALS_COEFFICIENTS_ARRAY);
}
if (n == 1) {
return new double[]{0};
}
double[] result = new double[n - 1];
for (int i = n - 1; i > 0; i--) {
result[i - 1] = i * coefficients[i];
}
return result;
}
Returns the derivative as a PolynomialFunction
. Returns: the derivative polynomial.
/**
* Returns the derivative as a {@link PolynomialFunction}.
*
* @return the derivative polynomial.
*/
public PolynomialFunction polynomialDerivative() {
return new PolynomialFunction(differentiate(coefficients));
}
Returns the derivative as a UnivariateFunction
. Returns: the derivative function.
/**
* Returns the derivative as a {@link UnivariateFunction}.
*
* @return the derivative function.
*/
public UnivariateFunction derivative() {
return polynomialDerivative();
}
Returns a string representation of the polynomial.
The representation is user oriented. Terms are displayed lowest
degrees first. The multiplications signs, coefficients equals to
one and null terms are not displayed (except if the polynomial is 0,
in which case the 0 constant term is displayed). Addition of terms
with negative coefficients are replaced by subtraction of terms
with positive coefficients except for the first displayed term
(i.e. we display -3
for a constant negative polynomial,
but 1 - 3 x + x^2
if the negative coefficient is not
the first one displayed).
Returns: a string representation of the polynomial.
/**
* Returns a string representation of the polynomial.
*
* <p>The representation is user oriented. Terms are displayed lowest
* degrees first. The multiplications signs, coefficients equals to
* one and null terms are not displayed (except if the polynomial is 0,
* in which case the 0 constant term is displayed). Addition of terms
* with negative coefficients are replaced by subtraction of terms
* with positive coefficients except for the first displayed term
* (i.e. we display <code>-3</code> for a constant negative polynomial,
* but <code>1 - 3 x + x^2</code> if the negative coefficient is not
* the first one displayed).</p>
*
* @return a string representation of the polynomial.
*/
@Override
public String toString() {
StringBuilder s = new StringBuilder();
if (coefficients[0] == 0.0) {
if (coefficients.length == 1) {
return "0";
}
} else {
s.append(toString(coefficients[0]));
}
for (int i = 1; i < coefficients.length; ++i) {
if (coefficients[i] != 0) {
if (s.length() > 0) {
if (coefficients[i] < 0) {
s.append(" - ");
} else {
s.append(" + ");
}
} else {
if (coefficients[i] < 0) {
s.append("-");
}
}
double absAi = FastMath.abs(coefficients[i]);
if ((absAi - 1) != 0) {
s.append(toString(absAi));
s.append(' ');
}
s.append("x");
if (i > 1) {
s.append('^');
s.append(Integer.toString(i));
}
}
}
return s.toString();
}
Creates a string representing a coefficient, removing ".0" endings.
Params: - coeff – Coefficient.
Returns: a string representation of coeff
.
/**
* Creates a string representing a coefficient, removing ".0" endings.
*
* @param coeff Coefficient.
* @return a string representation of {@code coeff}.
*/
private static String toString(double coeff) {
final String c = Double.toString(coeff);
if (c.endsWith(".0")) {
return c.substring(0, c.length() - 2);
} else {
return c;
}
}
{@inheritDoc} /** {@inheritDoc} */
@Override
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + Arrays.hashCode(coefficients);
return result;
}
{@inheritDoc} /** {@inheritDoc} */
@Override
public boolean equals(Object obj) {
if (this == obj) {
return true;
}
if (!(obj instanceof PolynomialFunction)) {
return false;
}
PolynomialFunction other = (PolynomialFunction) obj;
if (!Arrays.equals(coefficients, other.coefficients)) {
return false;
}
return true;
}
Dedicated parametric polynomial class.
Since: 3.0
/**
* Dedicated parametric polynomial class.
*
* @since 3.0
*/
public static class Parametric implements ParametricUnivariateFunction {
{@inheritDoc} /** {@inheritDoc} */
public double[] gradient(double x, double ... parameters) {
final double[] gradient = new double[parameters.length];
double xn = 1.0;
for (int i = 0; i < parameters.length; ++i) {
gradient[i] = xn;
xn *= x;
}
return gradient;
}
{@inheritDoc} /** {@inheritDoc} */
public double value(final double x, final double ... parameters)
throws NoDataException {
return PolynomialFunction.evaluate(parameters, x);
}
}
}