/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.analysis.interpolation;

import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.NoDataException;
import org.apache.commons.math3.exception.NonMonotonicSequenceException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.util.MathArrays;

Generates a tricubic interpolating function.
Since:2.2
Deprecated:To be removed in 4.0 (see MATH-1166).
/** * Generates a tricubic interpolating function. * * @since 2.2 * @deprecated To be removed in 4.0 (see MATH-1166). */
@Deprecated public class TricubicSplineInterpolator implements TrivariateGridInterpolator {
{@inheritDoc}
/** * {@inheritDoc} */
public TricubicSplineInterpolatingFunction interpolate(final double[] xval, final double[] yval, final double[] zval, final double[][][] fval) throws NoDataException, NumberIsTooSmallException, DimensionMismatchException, NonMonotonicSequenceException { if (xval.length == 0 || yval.length == 0 || zval.length == 0 || fval.length == 0) { throw new NoDataException(); } if (xval.length != fval.length) { throw new DimensionMismatchException(xval.length, fval.length); } MathArrays.checkOrder(xval); MathArrays.checkOrder(yval); MathArrays.checkOrder(zval); final int xLen = xval.length; final int yLen = yval.length; final int zLen = zval.length; // Samples, re-ordered as (z, x, y) and (y, z, x) tuplets // fvalXY[k][i][j] = f(xval[i], yval[j], zval[k]) // fvalZX[j][k][i] = f(xval[i], yval[j], zval[k]) final double[][][] fvalXY = new double[zLen][xLen][yLen]; final double[][][] fvalZX = new double[yLen][zLen][xLen]; for (int i = 0; i < xLen; i++) { if (fval[i].length != yLen) { throw new DimensionMismatchException(fval[i].length, yLen); } for (int j = 0; j < yLen; j++) { if (fval[i][j].length != zLen) { throw new DimensionMismatchException(fval[i][j].length, zLen); } for (int k = 0; k < zLen; k++) { final double v = fval[i][j][k]; fvalXY[k][i][j] = v; fvalZX[j][k][i] = v; } } } final BicubicSplineInterpolator bsi = new BicubicSplineInterpolator(true); // For each line x[i] (0 <= i < xLen), construct a 2D spline in y and z final BicubicSplineInterpolatingFunction[] xSplineYZ = new BicubicSplineInterpolatingFunction[xLen]; for (int i = 0; i < xLen; i++) { xSplineYZ[i] = bsi.interpolate(yval, zval, fval[i]); } // For each line y[j] (0 <= j < yLen), construct a 2D spline in z and x final BicubicSplineInterpolatingFunction[] ySplineZX = new BicubicSplineInterpolatingFunction[yLen]; for (int j = 0; j < yLen; j++) { ySplineZX[j] = bsi.interpolate(zval, xval, fvalZX[j]); } // For each line z[k] (0 <= k < zLen), construct a 2D spline in x and y final BicubicSplineInterpolatingFunction[] zSplineXY = new BicubicSplineInterpolatingFunction[zLen]; for (int k = 0; k < zLen; k++) { zSplineXY[k] = bsi.interpolate(xval, yval, fvalXY[k]); } // Partial derivatives wrt x and wrt y final double[][][] dFdX = new double[xLen][yLen][zLen]; final double[][][] dFdY = new double[xLen][yLen][zLen]; final double[][][] d2FdXdY = new double[xLen][yLen][zLen]; for (int k = 0; k < zLen; k++) { final BicubicSplineInterpolatingFunction f = zSplineXY[k]; for (int i = 0; i < xLen; i++) { final double x = xval[i]; for (int j = 0; j < yLen; j++) { final double y = yval[j]; dFdX[i][j][k] = f.partialDerivativeX(x, y); dFdY[i][j][k] = f.partialDerivativeY(x, y); d2FdXdY[i][j][k] = f.partialDerivativeXY(x, y); } } } // Partial derivatives wrt y and wrt z final double[][][] dFdZ = new double[xLen][yLen][zLen]; final double[][][] d2FdYdZ = new double[xLen][yLen][zLen]; for (int i = 0; i < xLen; i++) { final BicubicSplineInterpolatingFunction f = xSplineYZ[i]; for (int j = 0; j < yLen; j++) { final double y = yval[j]; for (int k = 0; k < zLen; k++) { final double z = zval[k]; dFdZ[i][j][k] = f.partialDerivativeY(y, z); d2FdYdZ[i][j][k] = f.partialDerivativeXY(y, z); } } } // Partial derivatives wrt x and wrt z final double[][][] d2FdZdX = new double[xLen][yLen][zLen]; for (int j = 0; j < yLen; j++) { final BicubicSplineInterpolatingFunction f = ySplineZX[j]; for (int k = 0; k < zLen; k++) { final double z = zval[k]; for (int i = 0; i < xLen; i++) { final double x = xval[i]; d2FdZdX[i][j][k] = f.partialDerivativeXY(z, x); } } } // Third partial cross-derivatives final double[][][] d3FdXdYdZ = new double[xLen][yLen][zLen]; for (int i = 0; i < xLen ; i++) { final int nI = nextIndex(i, xLen); final int pI = previousIndex(i); for (int j = 0; j < yLen; j++) { final int nJ = nextIndex(j, yLen); final int pJ = previousIndex(j); for (int k = 0; k < zLen; k++) { final int nK = nextIndex(k, zLen); final int pK = previousIndex(k); // XXX Not sure about this formula d3FdXdYdZ[i][j][k] = (fval[nI][nJ][nK] - fval[nI][pJ][nK] - fval[pI][nJ][nK] + fval[pI][pJ][nK] - fval[nI][nJ][pK] + fval[nI][pJ][pK] + fval[pI][nJ][pK] - fval[pI][pJ][pK]) / ((xval[nI] - xval[pI]) * (yval[nJ] - yval[pJ]) * (zval[nK] - zval[pK])) ; } } } // Create the interpolating splines return new TricubicSplineInterpolatingFunction(xval, yval, zval, fval, dFdX, dFdY, dFdZ, d2FdXdY, d2FdZdX, d2FdYdZ, d3FdXdYdZ); }
Compute the next index of an array, clipping if necessary. It is assumed (but not checked) that i is larger than or equal to 0.
Params:
  • i – Index
  • max – Upper limit of the array
Returns:the next index
/** * Compute the next index of an array, clipping if necessary. * It is assumed (but not checked) that {@code i} is larger than or equal to 0. * * @param i Index * @param max Upper limit of the array * @return the next index */
private int nextIndex(int i, int max) { final int index = i + 1; return index < max ? index : index - 1; }
Compute the previous index of an array, clipping if necessary. It is assumed (but not checked) that i is smaller than the size of the array.
Params:
  • i – Index
Returns:the previous index
/** * Compute the previous index of an array, clipping if necessary. * It is assumed (but not checked) that {@code i} is smaller than the size of the array. * * @param i Index * @return the previous index */
private int previousIndex(int i) { final int index = i - 1; return index >= 0 ? index : 0; } }