/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.analysis.integration;

import org.apache.commons.math3.exception.MaxCountExceededException;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.exception.TooManyEvaluationsException;
import org.apache.commons.math3.util.FastMath;

Implements the Romberg Algorithm for integration of real univariate functions. For reference, see Introduction to Numerical Analysis, ISBN 038795452X, chapter 3.

Romberg integration employs k successive refinements of the trapezoid rule to remove error terms less than order O(N^(-2k)). Simpson's rule is a special case of k = 2.

Since:1.2
/** * Implements the <a href="http://mathworld.wolfram.com/RombergIntegration.html"> * Romberg Algorithm</a> for integration of real univariate functions. For * reference, see <b>Introduction to Numerical Analysis</b>, ISBN 038795452X, * chapter 3. * <p> * Romberg integration employs k successive refinements of the trapezoid * rule to remove error terms less than order O(N^(-2k)). Simpson's rule * is a special case of k = 2.</p> * * @since 1.2 */
public class RombergIntegrator extends BaseAbstractUnivariateIntegrator {
Maximal number of iterations for Romberg.
/** Maximal number of iterations for Romberg. */
public static final int ROMBERG_MAX_ITERATIONS_COUNT = 32;
Build a Romberg integrator with given accuracies and iterations counts.
Params:
  • relativeAccuracy – relative accuracy of the result
  • absoluteAccuracy – absolute accuracy of the result
  • minimalIterationCount – minimum number of iterations
  • maximalIterationCount – maximum number of iterations (must be less than or equal to ROMBERG_MAX_ITERATIONS_COUNT)
Throws:
/** * Build a Romberg integrator with given accuracies and iterations counts. * @param relativeAccuracy relative accuracy of the result * @param absoluteAccuracy absolute accuracy of the result * @param minimalIterationCount minimum number of iterations * @param maximalIterationCount maximum number of iterations * (must be less than or equal to {@link #ROMBERG_MAX_ITERATIONS_COUNT}) * @exception NotStrictlyPositiveException if minimal number of iterations * is not strictly positive * @exception NumberIsTooSmallException if maximal number of iterations * is lesser than or equal to the minimal number of iterations * @exception NumberIsTooLargeException if maximal number of iterations * is greater than {@link #ROMBERG_MAX_ITERATIONS_COUNT} */
public RombergIntegrator(final double relativeAccuracy, final double absoluteAccuracy, final int minimalIterationCount, final int maximalIterationCount) throws NotStrictlyPositiveException, NumberIsTooSmallException, NumberIsTooLargeException { super(relativeAccuracy, absoluteAccuracy, minimalIterationCount, maximalIterationCount); if (maximalIterationCount > ROMBERG_MAX_ITERATIONS_COUNT) { throw new NumberIsTooLargeException(maximalIterationCount, ROMBERG_MAX_ITERATIONS_COUNT, false); } }
Build a Romberg integrator with given iteration counts.
Params:
  • minimalIterationCount – minimum number of iterations
  • maximalIterationCount – maximum number of iterations (must be less than or equal to ROMBERG_MAX_ITERATIONS_COUNT)
Throws:
/** * Build a Romberg integrator with given iteration counts. * @param minimalIterationCount minimum number of iterations * @param maximalIterationCount maximum number of iterations * (must be less than or equal to {@link #ROMBERG_MAX_ITERATIONS_COUNT}) * @exception NotStrictlyPositiveException if minimal number of iterations * is not strictly positive * @exception NumberIsTooSmallException if maximal number of iterations * is lesser than or equal to the minimal number of iterations * @exception NumberIsTooLargeException if maximal number of iterations * is greater than {@link #ROMBERG_MAX_ITERATIONS_COUNT} */
public RombergIntegrator(final int minimalIterationCount, final int maximalIterationCount) throws NotStrictlyPositiveException, NumberIsTooSmallException, NumberIsTooLargeException { super(minimalIterationCount, maximalIterationCount); if (maximalIterationCount > ROMBERG_MAX_ITERATIONS_COUNT) { throw new NumberIsTooLargeException(maximalIterationCount, ROMBERG_MAX_ITERATIONS_COUNT, false); } }
Construct a Romberg integrator with default settings (max iteration count set to ROMBERG_MAX_ITERATIONS_COUNT)
/** * Construct a Romberg integrator with default settings * (max iteration count set to {@link #ROMBERG_MAX_ITERATIONS_COUNT}) */
public RombergIntegrator() { super(DEFAULT_MIN_ITERATIONS_COUNT, ROMBERG_MAX_ITERATIONS_COUNT); }
{@inheritDoc}
/** {@inheritDoc} */
@Override protected double doIntegrate() throws TooManyEvaluationsException, MaxCountExceededException { final int m = getMaximalIterationCount() + 1; double previousRow[] = new double[m]; double currentRow[] = new double[m]; TrapezoidIntegrator qtrap = new TrapezoidIntegrator(); currentRow[0] = qtrap.stage(this, 0); incrementCount(); double olds = currentRow[0]; while (true) { final int i = getIterations(); // switch rows final double[] tmpRow = previousRow; previousRow = currentRow; currentRow = tmpRow; currentRow[0] = qtrap.stage(this, i); incrementCount(); for (int j = 1; j <= i; j++) { // Richardson extrapolation coefficient final double r = (1L << (2 * j)) - 1; final double tIJm1 = currentRow[j - 1]; currentRow[j] = tIJm1 + (tIJm1 - previousRow[j - 1]) / r; } final double s = currentRow[i]; if (i >= getMinimalIterationCount()) { final double delta = FastMath.abs(s - olds); final double rLimit = getRelativeAccuracy() * (FastMath.abs(olds) + FastMath.abs(s)) * 0.5; if ((delta <= rLimit) || (delta <= getAbsoluteAccuracy())) { return s; } } olds = s; } } }