/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.analysis.integration;

import org.apache.commons.math3.analysis.UnivariateFunction;
import org.apache.commons.math3.analysis.integration.gauss.GaussIntegratorFactory;
import org.apache.commons.math3.analysis.integration.gauss.GaussIntegrator;
import org.apache.commons.math3.exception.MathIllegalArgumentException;
import org.apache.commons.math3.exception.MaxCountExceededException;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.exception.TooManyEvaluationsException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.util.FastMath;

This algorithm divides the integration interval into equally-sized sub-interval and on each of them performs a Legendre-Gauss quadrature. Because of its non-adaptive nature, this algorithm can converge to a wrong value for the integral (for example, if the function is significantly different from zero toward the ends of the integration interval). In particular, a change of variables aimed at estimating integrals over infinite intervals as proposed here should be avoided when using this class.
Since:3.1
/** * This algorithm divides the integration interval into equally-sized * sub-interval and on each of them performs a * <a href="http://mathworld.wolfram.com/Legendre-GaussQuadrature.html"> * Legendre-Gauss</a> quadrature. * Because of its <em>non-adaptive</em> nature, this algorithm can * converge to a wrong value for the integral (for example, if the * function is significantly different from zero toward the ends of the * integration interval). * In particular, a change of variables aimed at estimating integrals * over infinite intervals as proposed * <a href="http://en.wikipedia.org/w/index.php?title=Numerical_integration#Integrals_over_infinite_intervals"> * here</a> should be avoided when using this class. * * @since 3.1 */
public class IterativeLegendreGaussIntegrator extends BaseAbstractUnivariateIntegrator {
Factory that computes the points and weights.
/** Factory that computes the points and weights. */
private static final GaussIntegratorFactory FACTORY = new GaussIntegratorFactory();
Number of integration points (per interval).
/** Number of integration points (per interval). */
private final int numberOfPoints;
Builds an integrator with given accuracies and iterations counts.
Params:
  • n – Number of integration points.
  • relativeAccuracy – Relative accuracy of the result.
  • absoluteAccuracy – Absolute accuracy of the result.
  • minimalIterationCount – Minimum number of iterations.
  • maximalIterationCount – Maximum number of iterations.
Throws:
/** * Builds an integrator with given accuracies and iterations counts. * * @param n Number of integration points. * @param relativeAccuracy Relative accuracy of the result. * @param absoluteAccuracy Absolute accuracy of the result. * @param minimalIterationCount Minimum number of iterations. * @param maximalIterationCount Maximum number of iterations. * @throws NotStrictlyPositiveException if minimal number of iterations * or number of points are not strictly positive. * @throws NumberIsTooSmallException if maximal number of iterations * is smaller than or equal to the minimal number of iterations. */
public IterativeLegendreGaussIntegrator(final int n, final double relativeAccuracy, final double absoluteAccuracy, final int minimalIterationCount, final int maximalIterationCount) throws NotStrictlyPositiveException, NumberIsTooSmallException { super(relativeAccuracy, absoluteAccuracy, minimalIterationCount, maximalIterationCount); if (n <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.NUMBER_OF_POINTS, n); } numberOfPoints = n; }
Builds an integrator with given accuracies.
Params:
  • n – Number of integration points.
  • relativeAccuracy – Relative accuracy of the result.
  • absoluteAccuracy – Absolute accuracy of the result.
Throws:
/** * Builds an integrator with given accuracies. * * @param n Number of integration points. * @param relativeAccuracy Relative accuracy of the result. * @param absoluteAccuracy Absolute accuracy of the result. * @throws NotStrictlyPositiveException if {@code n < 1}. */
public IterativeLegendreGaussIntegrator(final int n, final double relativeAccuracy, final double absoluteAccuracy) throws NotStrictlyPositiveException { this(n, relativeAccuracy, absoluteAccuracy, DEFAULT_MIN_ITERATIONS_COUNT, DEFAULT_MAX_ITERATIONS_COUNT); }
Builds an integrator with given iteration counts.
Params:
  • n – Number of integration points.
  • minimalIterationCount – Minimum number of iterations.
  • maximalIterationCount – Maximum number of iterations.
Throws:
/** * Builds an integrator with given iteration counts. * * @param n Number of integration points. * @param minimalIterationCount Minimum number of iterations. * @param maximalIterationCount Maximum number of iterations. * @throws NotStrictlyPositiveException if minimal number of iterations * is not strictly positive. * @throws NumberIsTooSmallException if maximal number of iterations * is smaller than or equal to the minimal number of iterations. * @throws NotStrictlyPositiveException if {@code n < 1}. */
public IterativeLegendreGaussIntegrator(final int n, final int minimalIterationCount, final int maximalIterationCount) throws NotStrictlyPositiveException, NumberIsTooSmallException { this(n, DEFAULT_RELATIVE_ACCURACY, DEFAULT_ABSOLUTE_ACCURACY, minimalIterationCount, maximalIterationCount); }
{@inheritDoc}
/** {@inheritDoc} */
@Override protected double doIntegrate() throws MathIllegalArgumentException, TooManyEvaluationsException, MaxCountExceededException { // Compute first estimate with a single step. double oldt = stage(1); int n = 2; while (true) { // Improve integral with a larger number of steps. final double t = stage(n); // Estimate the error. final double delta = FastMath.abs(t - oldt); final double limit = FastMath.max(getAbsoluteAccuracy(), getRelativeAccuracy() * (FastMath.abs(oldt) + FastMath.abs(t)) * 0.5); // check convergence if (getIterations() + 1 >= getMinimalIterationCount() && delta <= limit) { return t; } // Prepare next iteration. final double ratio = FastMath.min(4, FastMath.pow(delta / limit, 0.5 / numberOfPoints)); n = FastMath.max((int) (ratio * n), n + 1); oldt = t; incrementCount(); } }
Compute the n-th stage integral.
Params:
  • n – Number of steps.
Throws:
Returns:the value of n-th stage integral.
/** * Compute the n-th stage integral. * * @param n Number of steps. * @return the value of n-th stage integral. * @throws TooManyEvaluationsException if the maximum number of evaluations * is exceeded. */
private double stage(final int n) throws TooManyEvaluationsException { // Function to be integrated is stored in the base class. final UnivariateFunction f = new UnivariateFunction() {
{@inheritDoc}
/** {@inheritDoc} */
public double value(double x) throws MathIllegalArgumentException, TooManyEvaluationsException { return computeObjectiveValue(x); } }; final double min = getMin(); final double max = getMax(); final double step = (max - min) / n; double sum = 0; for (int i = 0; i < n; i++) { // Integrate over each sub-interval [a, b]. final double a = min + i * step; final double b = a + step; final GaussIntegrator g = FACTORY.legendreHighPrecision(numberOfPoints, a, b); sum += g.integrate(f); } return sum; } }