/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.collections4;

import java.util.AbstractList;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;

import org.apache.commons.collections4.bag.HashBag;
import org.apache.commons.collections4.functors.DefaultEquator;
import org.apache.commons.collections4.list.FixedSizeList;
import org.apache.commons.collections4.list.LazyList;
import org.apache.commons.collections4.list.PredicatedList;
import org.apache.commons.collections4.list.TransformedList;
import org.apache.commons.collections4.list.UnmodifiableList;
import org.apache.commons.collections4.sequence.CommandVisitor;
import org.apache.commons.collections4.sequence.EditScript;
import org.apache.commons.collections4.sequence.SequencesComparator;

Provides utility methods and decorators for List instances.
Since:1.0
/** * Provides utility methods and decorators for {@link List} instances. * * @since 1.0 */
public class ListUtils {
ListUtils should not normally be instantiated.
/** * <code>ListUtils</code> should not normally be instantiated. */
private ListUtils() {} //-----------------------------------------------------------------------
Returns an immutable empty list if the argument is null, or the argument itself otherwise.
Params:
  • list – the list, possibly null
Type parameters:
  • <T> – the element type
Returns:an empty list if the argument is null
/** * Returns an immutable empty list if the argument is <code>null</code>, * or the argument itself otherwise. * * @param <T> the element type * @param list the list, possibly <code>null</code> * @return an empty list if the argument is <code>null</code> */
public static <T> List<T> emptyIfNull(final List<T> list) { return list == null ? Collections.<T>emptyList() : list; }
Returns either the passed in list, or if the list is null, the value of defaultList.
Params:
  • list – the list, possibly null
  • defaultList – the returned values if list is null
Type parameters:
  • <T> – the element type
Returns:an empty list if the argument is null
Since:4.0
/** * Returns either the passed in list, or if the list is {@code null}, * the value of {@code defaultList}. * * @param <T> the element type * @param list the list, possibly {@code null} * @param defaultList the returned values if list is {@code null} * @return an empty list if the argument is <code>null</code> * @since 4.0 */
public static <T> List<T> defaultIfNull(final List<T> list, final List<T> defaultList) { return list == null ? defaultList : list; }
Returns a new list containing all elements that are contained in both given lists.
Params:
  • list1 – the first list
  • list2 – the second list
Type parameters:
  • <E> – the element type
Throws:
Returns: the intersection of those two lists
/** * Returns a new list containing all elements that are contained in * both given lists. * * @param <E> the element type * @param list1 the first list * @param list2 the second list * @return the intersection of those two lists * @throws NullPointerException if either list is null */
public static <E> List<E> intersection(final List<? extends E> list1, final List<? extends E> list2) { final List<E> result = new ArrayList<>(); List<? extends E> smaller = list1; List<? extends E> larger = list2; if (list1.size() > list2.size()) { smaller = list2; larger = list1; } final HashSet<E> hashSet = new HashSet<>(smaller); for (final E e : larger) { if (hashSet.contains(e)) { result.add(e); hashSet.remove(e); } } return result; }
Subtracts all elements in the second list from the first list, placing the results in a new list.

This differs from List.removeAll(Collection) in that cardinality is respected; if list1 contains two occurrences of null and list2 only contains one occurrence, then the returned list will still contain one occurrence.

Params:
  • list1 – the list to subtract from
  • list2 – the list to subtract
Type parameters:
  • <E> – the element type
Throws:
Returns:a new list containing the results
/** * Subtracts all elements in the second list from the first list, * placing the results in a new list. * <p> * This differs from {@link List#removeAll(Collection)} in that * cardinality is respected; if <Code>list1</Code> contains two * occurrences of <Code>null</Code> and <Code>list2</Code> only * contains one occurrence, then the returned list will still contain * one occurrence. * * @param <E> the element type * @param list1 the list to subtract from * @param list2 the list to subtract * @return a new list containing the results * @throws NullPointerException if either list is null */
public static <E> List<E> subtract(final List<E> list1, final List<? extends E> list2) { final ArrayList<E> result = new ArrayList<>(); final HashBag<E> bag = new HashBag<>(list2); for (final E e : list1) { if (!bag.remove(e, 1)) { result.add(e); } } return result; }
Returns the sum of the given lists. This is their intersection subtracted from their union.
Params:
  • list1 – the first list
  • list2 – the second list
Type parameters:
  • <E> – the element type
Throws:
Returns: a new list containing the sum of those lists
/** * Returns the sum of the given lists. This is their intersection * subtracted from their union. * * @param <E> the element type * @param list1 the first list * @param list2 the second list * @return a new list containing the sum of those lists * @throws NullPointerException if either list is null */
public static <E> List<E> sum(final List<? extends E> list1, final List<? extends E> list2) { return subtract(union(list1, list2), intersection(list1, list2)); }
Returns a new list containing the second list appended to the first list. The List.addAll(Collection) operation is used to append the two given lists into a new list.
Params:
  • list1 – the first list
  • list2 – the second list
Type parameters:
  • <E> – the element type
Throws:
Returns:a new list containing the union of those lists
/** * Returns a new list containing the second list appended to the * first list. The {@link List#addAll(Collection)} operation is * used to append the two given lists into a new list. * * @param <E> the element type * @param list1 the first list * @param list2 the second list * @return a new list containing the union of those lists * @throws NullPointerException if either list is null */
public static <E> List<E> union(final List<? extends E> list1, final List<? extends E> list2) { final ArrayList<E> result = new ArrayList<>(list1.size() + list2.size()); result.addAll(list1); result.addAll(list2); return result; }
Selects all elements from input collection which match the given predicate into an output list.

A null predicate matches no elements.

Params:
  • inputCollection – the collection to get the input from, may not be null
  • predicate – the predicate to use, may be null
Type parameters:
  • <E> – the element type
Throws:
See Also:
Returns:the elements matching the predicate (new list)
Since:4.0
/** * Selects all elements from input collection which match the given * predicate into an output list. * <p> * A <code>null</code> predicate matches no elements. * * @param <E> the element type * @param inputCollection the collection to get the input from, may not be null * @param predicate the predicate to use, may be null * @return the elements matching the predicate (new list) * @throws NullPointerException if the input list is null * * @since 4.0 * @see CollectionUtils#select(Iterable, Predicate) */
public static <E> List<E> select(final Collection<? extends E> inputCollection, final Predicate<? super E> predicate) { return CollectionUtils.select(inputCollection, predicate, new ArrayList<E>(inputCollection.size())); }
Selects all elements from inputCollection which don't match the given predicate into an output collection.

If the input predicate is null, the result is an empty list.

Params:
  • inputCollection – the collection to get the input from, may not be null
  • predicate – the predicate to use, may be null
Type parameters:
  • <E> – the element type
Throws:
See Also:
Returns:the elements not matching the predicate (new list)
Since:4.0
/** * Selects all elements from inputCollection which don't match the given * predicate into an output collection. * <p> * If the input predicate is <code>null</code>, the result is an empty list. * * @param <E> the element type * @param inputCollection the collection to get the input from, may not be null * @param predicate the predicate to use, may be null * @return the elements <b>not</b> matching the predicate (new list) * @throws NullPointerException if the input collection is null * * @since 4.0 * @see CollectionUtils#selectRejected(Iterable, Predicate) */
public static <E> List<E> selectRejected(final Collection<? extends E> inputCollection, final Predicate<? super E> predicate) { return CollectionUtils.selectRejected(inputCollection, predicate, new ArrayList<E>(inputCollection.size())); }
Tests two lists for value-equality as per the equality contract in List.equals(Object).

This method is useful for implementing List when you cannot extend AbstractList. The method takes Collection instances to enable other collection types to use the List implementation algorithm.

The relevant text (slightly paraphrased as this is a static method) is:

Compares the two list objects for equality. Returns true if and only if both lists have the same size, and all corresponding pairs of elements in the two lists are equal. (Two elements e1 and e2 are equal if (e1==null ? e2==null : e1.equals(e2)).) In other words, two lists are defined to be equal if they contain the same elements in the same order. This definition ensures that the equals method works properly across different implementations of the List interface.
Note: The behaviour of this method is undefined if the lists are modified during the equals comparison.
Params:
  • list1 – the first list, may be null
  • list2 – the second list, may be null
See Also:
Returns:whether the lists are equal by value comparison
/** * Tests two lists for value-equality as per the equality contract in * {@link java.util.List#equals(java.lang.Object)}. * <p> * This method is useful for implementing <code>List</code> when you cannot * extend AbstractList. The method takes Collection instances to enable other * collection types to use the List implementation algorithm. * <p> * The relevant text (slightly paraphrased as this is a static method) is: * <blockquote> * Compares the two list objects for equality. Returns * {@code true} if and only if both * lists have the same size, and all corresponding pairs of elements in * the two lists are <i>equal</i>. (Two elements {@code e1} and * {@code e2} are <i>equal</i> if <code>(e1==null ? e2==null : * e1.equals(e2))</code>.) In other words, two lists are defined to be * equal if they contain the same elements in the same order. This * definition ensures that the equals method works properly across * different implementations of the {@code List} interface. * </blockquote> * * <b>Note:</b> The behaviour of this method is undefined if the lists are * modified during the equals comparison. * * @see java.util.List * @param list1 the first list, may be null * @param list2 the second list, may be null * @return whether the lists are equal by value comparison */
public static boolean isEqualList(final Collection<?> list1, final Collection<?> list2) { if (list1 == list2) { return true; } if (list1 == null || list2 == null || list1.size() != list2.size()) { return false; } final Iterator<?> it1 = list1.iterator(); final Iterator<?> it2 = list2.iterator(); Object obj1 = null; Object obj2 = null; while (it1.hasNext() && it2.hasNext()) { obj1 = it1.next(); obj2 = it2.next(); if (!(obj1 == null ? obj2 == null : obj1.equals(obj2))) { return false; } } return !(it1.hasNext() || it2.hasNext()); }
Generates a hash code using the algorithm specified in List.hashCode().

This method is useful for implementing List when you cannot extend AbstractList. The method takes Collection instances to enable other collection types to use the List implementation algorithm.

Params:
  • list – the list to generate the hashCode for, may be null
See Also:
Returns:the hash code
/** * Generates a hash code using the algorithm specified in * {@link java.util.List#hashCode()}. * <p> * This method is useful for implementing <code>List</code> when you cannot * extend AbstractList. The method takes Collection instances to enable other * collection types to use the List implementation algorithm. * * @see java.util.List#hashCode() * @param list the list to generate the hashCode for, may be null * @return the hash code */
public static int hashCodeForList(final Collection<?> list) { if (list == null) { return 0; } int hashCode = 1; final Iterator<?> it = list.iterator(); while (it.hasNext()) { final Object obj = it.next(); hashCode = 31 * hashCode + (obj == null ? 0 : obj.hashCode()); } return hashCode; } //-----------------------------------------------------------------------
Returns a List containing all the elements in collection that are also in retain. The cardinality of an element e in the returned list is the same as the cardinality of e in collection unless retain does not contain e, in which case the cardinality is zero. This method is useful if you do not wish to modify the collection c and thus cannot call collection.retainAll(retain);.

This implementation iterates over collection, checking each element in turn to see if it's contained in retain. If it's contained, it's added to the returned list. As a consequence, it is advised to use a collection type for retain that provides a fast (e.g. O(1)) implementation of Collection.contains(Object).

Params:
  • collection – the collection whose contents are the target of the #retailAll operation
  • retain – the collection containing the elements to be retained in the returned collection
Type parameters:
  • <E> – the element type
Throws:
Returns:a List containing all the elements of c that occur at least once in retain.
Since:3.2
/** * Returns a List containing all the elements in <code>collection</code> * that are also in <code>retain</code>. The cardinality of an element <code>e</code> * in the returned list is the same as the cardinality of <code>e</code> * in <code>collection</code> unless <code>retain</code> does not contain <code>e</code>, in which * case the cardinality is zero. This method is useful if you do not wish to modify * the collection <code>c</code> and thus cannot call <code>collection.retainAll(retain);</code>. * <p> * This implementation iterates over <code>collection</code>, checking each element in * turn to see if it's contained in <code>retain</code>. If it's contained, it's added * to the returned list. As a consequence, it is advised to use a collection type for * <code>retain</code> that provides a fast (e.g. O(1)) implementation of * {@link Collection#contains(Object)}. * * @param <E> the element type * @param collection the collection whose contents are the target of the #retailAll operation * @param retain the collection containing the elements to be retained in the returned collection * @return a <code>List</code> containing all the elements of <code>c</code> * that occur at least once in <code>retain</code>. * @throws NullPointerException if either parameter is null * @since 3.2 */
public static <E> List<E> retainAll(final Collection<E> collection, final Collection<?> retain) { final List<E> list = new ArrayList<>(Math.min(collection.size(), retain.size())); for (final E obj : collection) { if (retain.contains(obj)) { list.add(obj); } } return list; }
Removes the elements in remove from collection. That is, this method returns a list containing all the elements in collection that are not in remove. The cardinality of an element e in the returned collection is the same as the cardinality of e in collection unless remove contains e, in which case the cardinality is zero. This method is useful if you do not wish to modify collection and thus cannot call collection.removeAll(remove);.

This implementation iterates over collection, checking each element in turn to see if it's contained in remove. If it's not contained, it's added to the returned list. As a consequence, it is advised to use a collection type for remove that provides a fast (e.g. O(1)) implementation of Collection.contains(Object).

Params:
  • collection – the collection from which items are removed (in the returned collection)
  • remove – the items to be removed from the returned collection
Type parameters:
  • <E> – the element type
Throws:
Returns:a List containing all the elements of c except any elements that also occur in remove.
Since:3.2
/** * Removes the elements in <code>remove</code> from <code>collection</code>. That is, this * method returns a list containing all the elements in <code>collection</code> * that are not in <code>remove</code>. The cardinality of an element <code>e</code> * in the returned collection is the same as the cardinality of <code>e</code> * in <code>collection</code> unless <code>remove</code> contains <code>e</code>, in which * case the cardinality is zero. This method is useful if you do not wish to modify * <code>collection</code> and thus cannot call <code>collection.removeAll(remove);</code>. * <p> * This implementation iterates over <code>collection</code>, checking each element in * turn to see if it's contained in <code>remove</code>. If it's not contained, it's added * to the returned list. As a consequence, it is advised to use a collection type for * <code>remove</code> that provides a fast (e.g. O(1)) implementation of * {@link Collection#contains(Object)}. * * @param <E> the element type * @param collection the collection from which items are removed (in the returned collection) * @param remove the items to be removed from the returned <code>collection</code> * @return a <code>List</code> containing all the elements of <code>c</code> except * any elements that also occur in <code>remove</code>. * @throws NullPointerException if either parameter is null * @since 3.2 */
public static <E> List<E> removeAll(final Collection<E> collection, final Collection<?> remove) { final List<E> list = new ArrayList<>(); for (final E obj : collection) { if (!remove.contains(obj)) { list.add(obj); } } return list; } //-----------------------------------------------------------------------
Returns a synchronized list backed by the given list.

You must manually synchronize on the returned list's iterator to avoid non-deterministic behavior:

List list = ListUtils.synchronizedList(myList);
synchronized (list) {
    Iterator i = list.iterator();
    while (i.hasNext()) {
        process (i.next());
    }
}
This method is just a wrapper for Collections.synchronizedList(List<Object>).
Params:
  • list – the list to synchronize, must not be null
Type parameters:
  • <E> – the element type
Throws:
Returns:a synchronized list backed by the given list
/** * Returns a synchronized list backed by the given list. * <p> * You must manually synchronize on the returned list's iterator to * avoid non-deterministic behavior: * * <pre> * List list = ListUtils.synchronizedList(myList); * synchronized (list) { * Iterator i = list.iterator(); * while (i.hasNext()) { * process (i.next()); * } * } * </pre> * * This method is just a wrapper for {@link Collections#synchronizedList(List)}. * * @param <E> the element type * @param list the list to synchronize, must not be null * @return a synchronized list backed by the given list * @throws NullPointerException if the list is null */
public static <E> List<E> synchronizedList(final List<E> list) { return Collections.synchronizedList(list); }
Returns an unmodifiable list backed by the given list.

This method uses the implementation in the decorators subpackage.

Params:
  • list – the list to make unmodifiable, must not be null
Type parameters:
  • <E> – the element type
Throws:
Returns:an unmodifiable list backed by the given list
/** * Returns an unmodifiable list backed by the given list. * <p> * This method uses the implementation in the decorators subpackage. * * @param <E> the element type * @param list the list to make unmodifiable, must not be null * @return an unmodifiable list backed by the given list * @throws NullPointerException if the list is null */
public static <E> List<E> unmodifiableList(final List<? extends E> list) { return UnmodifiableList.unmodifiableList(list); }
Returns a predicated (validating) list backed by the given list.

Only objects that pass the test in the given predicate can be added to the list. Trying to add an invalid object results in an IllegalArgumentException. It is important not to use the original list after invoking this method, as it is a backdoor for adding invalid objects.

Params:
  • list – the list to predicate, must not be null
  • predicate – the predicate for the list, must not be null
Type parameters:
  • <E> – the element type
Throws:
Returns:a predicated list backed by the given list
/** * Returns a predicated (validating) list backed by the given list. * <p> * Only objects that pass the test in the given predicate can be added to the list. * Trying to add an invalid object results in an IllegalArgumentException. * It is important not to use the original list after invoking this method, * as it is a backdoor for adding invalid objects. * * @param <E> the element type * @param list the list to predicate, must not be null * @param predicate the predicate for the list, must not be null * @return a predicated list backed by the given list * @throws NullPointerException if the List or Predicate is null */
public static <E> List<E> predicatedList(final List<E> list, final Predicate<E> predicate) { return PredicatedList.predicatedList(list, predicate); }
Returns a transformed list backed by the given list.

This method returns a new list (decorating the specified list) that will transform any new entries added to it. Existing entries in the specified list will not be transformed.

Each object is passed through the transformer as it is added to the List. It is important not to use the original list after invoking this method, as it is a backdoor for adding untransformed objects.

Existing entries in the specified list will not be transformed. If you want that behaviour, see TransformedList.transformedList.

Params:
  • list – the list to predicate, must not be null
  • transformer – the transformer for the list, must not be null
Type parameters:
  • <E> – the element type
Throws:
Returns:a transformed list backed by the given list
/** * Returns a transformed list backed by the given list. * <p> * This method returns a new list (decorating the specified list) that * will transform any new entries added to it. * Existing entries in the specified list will not be transformed. * <p> * Each object is passed through the transformer as it is added to the * List. It is important not to use the original list after invoking this * method, as it is a backdoor for adding untransformed objects. * <p> * Existing entries in the specified list will not be transformed. * If you want that behaviour, see {@link TransformedList#transformedList}. * * @param <E> the element type * @param list the list to predicate, must not be null * @param transformer the transformer for the list, must not be null * @return a transformed list backed by the given list * @throws NullPointerException if the List or Transformer is null */
public static <E> List<E> transformedList(final List<E> list, final Transformer<? super E, ? extends E> transformer) { return TransformedList.transformingList(list, transformer); }
Returns a "lazy" list whose elements will be created on demand.

When the index passed to the returned list's get method is greater than the list's size, then the factory will be used to create a new object and that object will be inserted at that index.

For instance:

Factory<Date> factory = new Factory<Date>() {
    public Date create() {
        return new Date();
    }
}
List<Date> lazy = ListUtils.lazyList(new ArrayList<Date>(), factory);
Date date = lazy.get(3);
After the above code is executed, date will refer to a new Date instance. Furthermore, that Date instance is the fourth element in the list. The first, second, and third element are all set to null.
Params:
  • list – the list to make lazy, must not be null
  • factory – the factory for creating new objects, must not be null
Type parameters:
  • <E> – the element type
Throws:
Returns:a lazy list backed by the given list
/** * Returns a "lazy" list whose elements will be created on demand. * <p> * When the index passed to the returned list's {@link List#get(int) get} * method is greater than the list's size, then the factory will be used * to create a new object and that object will be inserted at that index. * <p> * For instance: * * <pre> * Factory&lt;Date&gt; factory = new Factory&lt;Date&gt;() { * public Date create() { * return new Date(); * } * } * List&lt;Date&gt; lazy = ListUtils.lazyList(new ArrayList&lt;Date&gt;(), factory); * Date date = lazy.get(3); * </pre> * * After the above code is executed, <code>date</code> will refer to * a new <code>Date</code> instance. Furthermore, that <code>Date</code> * instance is the fourth element in the list. The first, second, * and third element are all set to <code>null</code>. * * @param <E> the element type * @param list the list to make lazy, must not be null * @param factory the factory for creating new objects, must not be null * @return a lazy list backed by the given list * @throws NullPointerException if the List or Factory is null */
public static <E> List<E> lazyList(final List<E> list, final Factory<? extends E> factory) { return LazyList.lazyList(list, factory); }
Returns a fixed-sized list backed by the given list. Elements may not be added or removed from the returned list, but existing elements can be changed (for instance, via the List.set(int, Object) method).
Params:
  • list – the list whose size to fix, must not be null
Type parameters:
  • <E> – the element type
Throws:
Returns:a fixed-size list backed by that list
/** * Returns a fixed-sized list backed by the given list. * Elements may not be added or removed from the returned list, but * existing elements can be changed (for instance, via the * {@link List#set(int, Object)} method). * * @param <E> the element type * @param list the list whose size to fix, must not be null * @return a fixed-size list backed by that list * @throws NullPointerException if the List is null */
public static <E> List<E> fixedSizeList(final List<E> list) { return FixedSizeList.fixedSizeList(list); } //-----------------------------------------------------------------------
Finds the first index in the given List which matches the given predicate.

If the input List or predicate is null, or no element of the List matches the predicate, -1 is returned.

Params:
  • list – the List to search, may be null
  • predicate – the predicate to use, may be null
Type parameters:
  • <E> – the element type
Returns:the first index of an Object in the List which matches the predicate or -1 if none could be found
/** * Finds the first index in the given List which matches the given predicate. * <p> * If the input List or predicate is null, or no element of the List * matches the predicate, -1 is returned. * * @param <E> the element type * @param list the List to search, may be null * @param predicate the predicate to use, may be null * @return the first index of an Object in the List which matches the predicate or -1 if none could be found */
public static <E> int indexOf(final List<E> list, final Predicate<E> predicate) { if (list != null && predicate != null) { for (int i = 0; i < list.size(); i++) { final E item = list.get(i); if (predicate.evaluate(item)) { return i; } } } return -1; } //-----------------------------------------------------------------------
Returns the longest common subsequence (LCS) of two sequences (lists).
Params:
  • a – the first list
  • b – the second list
Type parameters:
  • <E> – the element type
Throws:
Returns:the longest common subsequence
Since:4.0
/** * Returns the longest common subsequence (LCS) of two sequences (lists). * * @param <E> the element type * @param a the first list * @param b the second list * @return the longest common subsequence * @throws NullPointerException if either list is {@code null} * @since 4.0 */
public static <E> List<E> longestCommonSubsequence(final List<E> a, final List<E> b) { return longestCommonSubsequence( a, b, DefaultEquator.defaultEquator() ); }
Returns the longest common subsequence (LCS) of two sequences (lists).
Params:
  • a – the first list
  • b – the second list
  • equator – the equator used to test object equality
Type parameters:
  • <E> – the element type
Throws:
Returns:the longest common subsequence
Since:4.0
/** * Returns the longest common subsequence (LCS) of two sequences (lists). * * @param <E> the element type * @param a the first list * @param b the second list * @param equator the equator used to test object equality * @return the longest common subsequence * @throws NullPointerException if either list or the equator is {@code null} * @since 4.0 */
public static <E> List<E> longestCommonSubsequence(final List<E> a, final List<E> b, final Equator<? super E> equator) { if (a == null || b == null) { throw new NullPointerException("List must not be null"); } if (equator == null) { throw new NullPointerException("Equator must not be null"); } final SequencesComparator<E> comparator = new SequencesComparator<>(a, b, equator); final EditScript<E> script = comparator.getScript(); final LcsVisitor<E> visitor = new LcsVisitor<>(); script.visit(visitor); return visitor.getSubSequence(); }
Returns the longest common subsequence (LCS) of two CharSequence objects.

This is a convenience method for using longestCommonSubsequence(List<Object>, List<Object>) with CharSequence instances.

Params:
  • a – the first sequence
  • b – the second sequence
Throws:
Returns:the longest common subsequence as String
Since:4.0
/** * Returns the longest common subsequence (LCS) of two {@link CharSequence} objects. * <p> * This is a convenience method for using {@link #longestCommonSubsequence(List, List)} * with {@link CharSequence} instances. * * @param a the first sequence * @param b the second sequence * @return the longest common subsequence as {@link String} * @throws NullPointerException if either sequence is {@code null} * @since 4.0 */
public static String longestCommonSubsequence(final CharSequence a, final CharSequence b) { if (a == null || b == null) { throw new NullPointerException("CharSequence must not be null"); } final List<Character> lcs = longestCommonSubsequence(new CharSequenceAsList( a ), new CharSequenceAsList( b )); final StringBuilder sb = new StringBuilder(); for ( final Character ch : lcs ) { sb.append(ch); } return sb.toString(); }
A helper class used to construct the longest common subsequence.
/** * A helper class used to construct the longest common subsequence. */
private static final class LcsVisitor<E> implements CommandVisitor<E> { private final ArrayList<E> sequence; public LcsVisitor() { sequence = new ArrayList<>(); } @Override public void visitInsertCommand(final E object) {} @Override public void visitDeleteCommand(final E object) {} @Override public void visitKeepCommand(final E object) { sequence.add(object); } public List<E> getSubSequence() { return sequence; } }
A simple wrapper to use a CharSequence as List.
/** * A simple wrapper to use a CharSequence as List. */
private static final class CharSequenceAsList extends AbstractList<Character> { private final CharSequence sequence; public CharSequenceAsList(final CharSequence sequence) { this.sequence = sequence; } @Override public Character get( final int index ) { return Character.valueOf(sequence.charAt( index )); } @Override public int size() { return sequence.length(); } } //-----------------------------------------------------------------------
Returns consecutive sublists of a list, each of the same size (the final list may be smaller). For example, partitioning a list containing [a, b, c, d, e] with a partition size of 3 yields [[a, b, c], [d, e]] -- an outer list containing two inner lists of three and two elements, all in the original order.

The outer list is unmodifiable, but reflects the latest state of the source list. The inner lists are sublist views of the original list, produced on demand using List.subList(int, int), and are subject to all the usual caveats about modification as explained in that API.

Adapted from http://code.google.com/p/guava-libraries/

Params:
  • list – the list to return consecutive sublists of
  • size – the desired size of each sublist (the last may be smaller)
Type parameters:
  • <T> – the element type
Throws:
Returns:a list of consecutive sublists
Since:4.0
/** * Returns consecutive {@link List#subList(int, int) sublists} of a * list, each of the same size (the final list may be smaller). For example, * partitioning a list containing {@code [a, b, c, d, e]} with a partition * size of 3 yields {@code [[a, b, c], [d, e]]} -- an outer list containing * two inner lists of three and two elements, all in the original order. * <p> * The outer list is unmodifiable, but reflects the latest state of the * source list. The inner lists are sublist views of the original list, * produced on demand using {@link List#subList(int, int)}, and are subject * to all the usual caveats about modification as explained in that API. * <p> * Adapted from http://code.google.com/p/guava-libraries/ * * @param <T> the element type * @param list the list to return consecutive sublists of * @param size the desired size of each sublist (the last may be smaller) * @return a list of consecutive sublists * @throws NullPointerException if list is null * @throws IllegalArgumentException if size is not strictly positive * @since 4.0 */
public static <T> List<List<T>> partition(final List<T> list, final int size) { if (list == null) { throw new NullPointerException("List must not be null"); } if (size <= 0) { throw new IllegalArgumentException("Size must be greater than 0"); } return new Partition<>(list, size); }
Provides a partition view on a List.
Since:4.0
/** * Provides a partition view on a {@link List}. * @since 4.0 */
private static class Partition<T> extends AbstractList<List<T>> { private final List<T> list; private final int size; private Partition(final List<T> list, final int size) { this.list = list; this.size = size; } @Override public List<T> get(final int index) { final int listSize = size(); if (index < 0) { throw new IndexOutOfBoundsException("Index " + index + " must not be negative"); } if (index >= listSize) { throw new IndexOutOfBoundsException("Index " + index + " must be less than size " + listSize); } final int start = index * size; final int end = Math.min(start + size, list.size()); return list.subList(start, end); } @Override public int size() { return (int) Math.ceil((double) list.size() / (double) size); } @Override public boolean isEmpty() { return list.isEmpty(); } } }