/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.cassandra.utils;

The following calculations are taken from: http://www.cs.wisc.edu/~cao/papers/summary-cache/node8.html "Bloom Filters - the math" This class's static methods are meant to facilitate the use of the Bloom Filter class by helping to choose correct values of 'bits per element' and 'number of hash functions, k'.
/** * The following calculations are taken from: * http://www.cs.wisc.edu/~cao/papers/summary-cache/node8.html * "Bloom Filters - the math" * * This class's static methods are meant to facilitate the use of the Bloom * Filter class by helping to choose correct values of 'bits per element' and * 'number of hash functions, k'. */
public class BloomCalculations { private static final int minBuckets = 2; private static final int minK = 1; private static final int EXCESS = 20;
In the following keyspaceName, the row 'i' shows false positive rates if i buckets per element are used. Cell 'j' shows false positive rates if j hash functions are used. The first row is 'i=0', the first column is 'j=0'. Each cell (i,j) the false positive rate determined by using i buckets per element and j hash functions.
/** * In the following keyspaceName, the row 'i' shows false positive rates if i buckets * per element are used. Cell 'j' shows false positive rates if j hash * functions are used. The first row is 'i=0', the first column is 'j=0'. * Each cell (i,j) the false positive rate determined by using i buckets per * element and j hash functions. */
static final double[][] probs = new double[][] { {1.0}, // dummy row representing 0 buckets per element {1.0, 1.0}, // dummy row representing 1 buckets per element {1.0, 0.393, 0.400}, {1.0, 0.283, 0.237, 0.253}, {1.0, 0.221, 0.155, 0.147, 0.160}, {1.0, 0.181, 0.109, 0.092, 0.092, 0.101}, // 5 {1.0, 0.154, 0.0804, 0.0609, 0.0561, 0.0578, 0.0638}, {1.0, 0.133, 0.0618, 0.0423, 0.0359, 0.0347, 0.0364}, {1.0, 0.118, 0.0489, 0.0306, 0.024, 0.0217, 0.0216, 0.0229}, {1.0, 0.105, 0.0397, 0.0228, 0.0166, 0.0141, 0.0133, 0.0135, 0.0145}, {1.0, 0.0952, 0.0329, 0.0174, 0.0118, 0.00943, 0.00844, 0.00819, 0.00846}, // 10 {1.0, 0.0869, 0.0276, 0.0136, 0.00864, 0.0065, 0.00552, 0.00513, 0.00509}, {1.0, 0.08, 0.0236, 0.0108, 0.00646, 0.00459, 0.00371, 0.00329, 0.00314}, {1.0, 0.074, 0.0203, 0.00875, 0.00492, 0.00332, 0.00255, 0.00217, 0.00199, 0.00194}, {1.0, 0.0689, 0.0177, 0.00718, 0.00381, 0.00244, 0.00179, 0.00146, 0.00129, 0.00121, 0.0012}, {1.0, 0.0645, 0.0156, 0.00596, 0.003, 0.00183, 0.00128, 0.001, 0.000852, 0.000775, 0.000744}, // 15 {1.0, 0.0606, 0.0138, 0.005, 0.00239, 0.00139, 0.000935, 0.000702, 0.000574, 0.000505, 0.00047, 0.000459}, {1.0, 0.0571, 0.0123, 0.00423, 0.00193, 0.00107, 0.000692, 0.000499, 0.000394, 0.000335, 0.000302, 0.000287, 0.000284}, {1.0, 0.054, 0.0111, 0.00362, 0.00158, 0.000839, 0.000519, 0.00036, 0.000275, 0.000226, 0.000198, 0.000183, 0.000176}, {1.0, 0.0513, 0.00998, 0.00312, 0.0013, 0.000663, 0.000394, 0.000264, 0.000194, 0.000155, 0.000132, 0.000118, 0.000111, 0.000109}, {1.0, 0.0488, 0.00906, 0.0027, 0.00108, 0.00053, 0.000303, 0.000196, 0.00014, 0.000108, 8.89e-05, 7.77e-05, 7.12e-05, 6.79e-05, 6.71e-05} // 20 }; // the first column is a dummy column representing K=0.
The optimal number of hashes for a given number of bits per element. These values are automatically calculated from the data above.
/** * The optimal number of hashes for a given number of bits per element. * These values are automatically calculated from the data above. */
private static final int[] optKPerBuckets = new int[probs.length]; static { for (int i = 0; i < probs.length; i++) { double min = Double.MAX_VALUE; double[] prob = probs[i]; for (int j = 0; j < prob.length; j++) { if (prob[j] < min) { min = prob[j]; optKPerBuckets[i] = Math.max(minK, j); } } } }
Given the number of buckets that can be used per element, return a specification that minimizes the false positive rate.
Params:
  • bucketsPerElement – The number of buckets per element for the filter.
Returns:A spec that minimizes the false positive rate.
/** * Given the number of buckets that can be used per element, return a * specification that minimizes the false positive rate. * * @param bucketsPerElement The number of buckets per element for the filter. * @return A spec that minimizes the false positive rate. */
public static BloomSpecification computeBloomSpec(int bucketsPerElement) { assert bucketsPerElement >= 1; assert bucketsPerElement <= probs.length - 1; return new BloomSpecification(optKPerBuckets[bucketsPerElement], bucketsPerElement); }
A wrapper class that holds two key parameters for a Bloom Filter: the number of hash functions used, and the number of buckets per element used.
/** * A wrapper class that holds two key parameters for a Bloom Filter: the * number of hash functions used, and the number of buckets per element used. */
public static class BloomSpecification { final int K; // number of hash functions. final int bucketsPerElement; public BloomSpecification(int k, int bucketsPerElement) { K = k; this.bucketsPerElement = bucketsPerElement; } public String toString() { return String.format("BloomSpecification(K=%d, bucketsPerElement=%d)", K, bucketsPerElement); } }
Given a maximum tolerable false positive probability, compute a Bloom specification which will give less than the specified false positive rate, but minimize the number of buckets per element and the number of hash functions used. Because bandwidth (and therefore total bitvector size) is considered more expensive than computing power, preference is given to minimizing buckets per element rather than number of hash functions.
Params:
  • maxBucketsPerElement – The maximum number of buckets available for the filter.
  • maxFalsePosProb – The maximum tolerable false positive rate.
Throws:
Returns:A Bloom Specification which would result in a false positive rate less than specified by the function call
/** * Given a maximum tolerable false positive probability, compute a Bloom * specification which will give less than the specified false positive rate, * but minimize the number of buckets per element and the number of hash * functions used. Because bandwidth (and therefore total bitvector size) * is considered more expensive than computing power, preference is given * to minimizing buckets per element rather than number of hash functions. * * @param maxBucketsPerElement The maximum number of buckets available for the filter. * @param maxFalsePosProb The maximum tolerable false positive rate. * @return A Bloom Specification which would result in a false positive rate * less than specified by the function call * @throws UnsupportedOperationException if a filter satisfying the parameters cannot be met */
public static BloomSpecification computeBloomSpec(int maxBucketsPerElement, double maxFalsePosProb) { assert maxBucketsPerElement >= 1; assert maxBucketsPerElement <= probs.length - 1; int maxK = probs[maxBucketsPerElement].length - 1; // Handle the trivial cases if(maxFalsePosProb >= probs[minBuckets][minK]) { return new BloomSpecification(2, optKPerBuckets[2]); } if (maxFalsePosProb < probs[maxBucketsPerElement][maxK]) { throw new UnsupportedOperationException(String.format("Unable to satisfy %s with %s buckets per element", maxFalsePosProb, maxBucketsPerElement)); } // First find the minimal required number of buckets: int bucketsPerElement = 2; int K = optKPerBuckets[2]; while(probs[bucketsPerElement][K] > maxFalsePosProb) { bucketsPerElement++; K = optKPerBuckets[bucketsPerElement]; } // Now that the number of buckets is sufficient, see if we can relax K // without losing too much precision. while(probs[bucketsPerElement][K - 1] <= maxFalsePosProb) { K--; } return new BloomSpecification(K, bucketsPerElement); }
Calculates the maximum number of buckets per element that this implementation can support. Crucially, it will lower the bucket count if necessary to meet BitSet's size restrictions.
/** * Calculates the maximum number of buckets per element that this implementation * can support. Crucially, it will lower the bucket count if necessary to meet * BitSet's size restrictions. */
public static int maxBucketsPerElement(long numElements) { numElements = Math.max(1, numElements); double v = (Long.MAX_VALUE - EXCESS) / (double)numElements; if (v < 1.0) { throw new UnsupportedOperationException("Cannot compute probabilities for " + numElements + " elements."); } return Math.min(BloomCalculations.probs.length - 1, (int)v); }
Retrieves the minimum supported BloomFilterFpChance value
Returns:Minimum supported value for BloomFilterFpChance
/** * Retrieves the minimum supported BloomFilterFpChance value * @return Minimum supported value for BloomFilterFpChance */
public static double minSupportedBloomFilterFpChance() { int maxBuckets = probs.length - 1; int maxK = probs[maxBuckets].length - 1; return probs[maxBuckets][maxK]; } }