/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.cassandra.index.sasi.conf.view;

import java.nio.ByteBuffer;
import java.util.HashSet;
import java.util.Map;
import java.util.Set;

import org.apache.cassandra.index.sasi.SSTableIndex;
import org.apache.cassandra.index.sasi.disk.OnDiskIndexBuilder;
import org.apache.cassandra.index.sasi.plan.Expression;
import org.apache.cassandra.index.sasi.utils.trie.KeyAnalyzer;
import org.apache.cassandra.index.sasi.utils.trie.PatriciaTrie;
import org.apache.cassandra.index.sasi.utils.trie.Trie;
import org.apache.cassandra.db.marshal.AbstractType;
import org.apache.cassandra.utils.Interval;
import org.apache.cassandra.utils.IntervalTree;

import com.google.common.collect.Sets;

This class is an extension over RangeTermTree for string terms, it is required because interval tree can't handle matching if search is on the prefix of min/max of the range, so for ascii/utf8 fields we build an additional prefix trie (including both min/max terms of the index) and do union of the results of the prefix tree search and results from the interval tree lookup.
/** * This class is an extension over RangeTermTree for string terms, * it is required because interval tree can't handle matching if search is on the * prefix of min/max of the range, so for ascii/utf8 fields we build an additional * prefix trie (including both min/max terms of the index) and do union of the results * of the prefix tree search and results from the interval tree lookup. */
public class PrefixTermTree extends RangeTermTree { private final OnDiskIndexBuilder.Mode mode; private final Trie<ByteBuffer, Set<SSTableIndex>> trie; public PrefixTermTree(ByteBuffer min, ByteBuffer max, Trie<ByteBuffer, Set<SSTableIndex>> trie, IntervalTree<Term, SSTableIndex, Interval<Term, SSTableIndex>> ranges, OnDiskIndexBuilder.Mode mode, AbstractType<?> comparator) { super(min, max, ranges, comparator); this.mode = mode; this.trie = trie; } public Set<SSTableIndex> search(Expression e) { Map<ByteBuffer, Set<SSTableIndex>> indexes = (e == null || e.lower == null || mode == OnDiskIndexBuilder.Mode.CONTAINS) ? trie : trie.prefixMap(e.lower.value); Set<SSTableIndex> view = new HashSet<>(indexes.size()); indexes.values().forEach(view::addAll); return Sets.union(view, super.search(e)); } public static class Builder extends RangeTermTree.Builder { private final PatriciaTrie<ByteBuffer, Set<SSTableIndex>> trie; protected Builder(OnDiskIndexBuilder.Mode mode, final AbstractType<?> comparator) { super(mode, comparator); trie = new PatriciaTrie<>(new ByteBufferKeyAnalyzer(comparator)); } public void addIndex(SSTableIndex index) { super.addIndex(index); addTerm(index.minTerm(), index); addTerm(index.maxTerm(), index); } public TermTree build() { return new PrefixTermTree(min, max, trie, IntervalTree.build(intervals), mode, comparator); } private void addTerm(ByteBuffer term, SSTableIndex index) { Set<SSTableIndex> indexes = trie.get(term); if (indexes == null) trie.put(term, (indexes = new HashSet<>())); indexes.add(index); } } private static class ByteBufferKeyAnalyzer implements KeyAnalyzer<ByteBuffer> { private final AbstractType<?> comparator; public ByteBufferKeyAnalyzer(AbstractType<?> comparator) { this.comparator = comparator; }
A bit mask where the first bit is 1 and the others are zero
/** * A bit mask where the first bit is 1 and the others are zero */
private static final int MSB = 1 << Byte.SIZE-1; public int compare(ByteBuffer a, ByteBuffer b) { return comparator.compare(a, b); } public int lengthInBits(ByteBuffer o) { return o.remaining() * Byte.SIZE; } public boolean isBitSet(ByteBuffer key, int bitIndex) { if (bitIndex >= lengthInBits(key)) return false; int index = bitIndex / Byte.SIZE; int bit = bitIndex % Byte.SIZE; return (key.get(index) & mask(bit)) != 0; } public int bitIndex(ByteBuffer key, ByteBuffer otherKey) { int length = Math.max(key.remaining(), otherKey.remaining()); boolean allNull = true; for (int i = 0; i < length; i++) { byte b1 = valueAt(key, i); byte b2 = valueAt(otherKey, i); if (b1 != b2) { int xor = b1 ^ b2; for (int j = 0; j < Byte.SIZE; j++) { if ((xor & mask(j)) != 0) return (i * Byte.SIZE) + j; } } if (b1 != 0) allNull = false; } return allNull ? KeyAnalyzer.NULL_BIT_KEY : KeyAnalyzer.EQUAL_BIT_KEY; } public boolean isPrefix(ByteBuffer key, ByteBuffer prefix) { if (key.remaining() < prefix.remaining()) return false; for (int i = 0; i < prefix.remaining(); i++) { if (key.get(i) != prefix.get(i)) return false; } return true; }
Returns the byte value at the given index.
/** * Returns the {@code byte} value at the given index. */
private byte valueAt(ByteBuffer value, int index) { return index >= 0 && index < value.remaining() ? value.get(index) : 0; }
Returns a bit mask where the given bit is set
/** * Returns a bit mask where the given bit is set */
private int mask(int bit) { return MSB >>> bit; } } }