/*
 * Copyright (c) 2012-2017 The ANTLR Project. All rights reserved.
 * Use of this file is governed by the BSD 3-clause license that
 * can be found in the LICENSE.txt file in the project root.
 */

package org.antlr.v4.runtime.atn;

import org.antlr.v4.runtime.RuleContext;
import org.antlr.v4.runtime.Token;
import org.antlr.v4.runtime.misc.IntervalSet;

import java.util.BitSet;
import java.util.HashSet;
import java.util.Set;

public class LL1Analyzer {
	
Special value added to the lookahead sets to indicate that we hit a predicate during analysis if seeThruPreds==false.
/** Special value added to the lookahead sets to indicate that we hit * a predicate during analysis if {@code seeThruPreds==false}. */
public static final int HIT_PRED = Token.INVALID_TYPE; public final ATN atn; public LL1Analyzer(ATN atn) { this.atn = atn; }
Calculates the SLL(1) expected lookahead set for each outgoing transition of an ATNState. The returned array has one element for each outgoing transition in s. If the closure from transition i leads to a semantic predicate before matching a symbol, the element at index i of the result will be null.
Params:
  • s – the ATN state
Returns:the expected symbols for each outgoing transition of s.
/** * Calculates the SLL(1) expected lookahead set for each outgoing transition * of an {@link ATNState}. The returned array has one element for each * outgoing transition in {@code s}. If the closure from transition * <em>i</em> leads to a semantic predicate before matching a symbol, the * element at index <em>i</em> of the result will be {@code null}. * * @param s the ATN state * @return the expected symbols for each outgoing transition of {@code s}. */
public IntervalSet[] getDecisionLookahead(ATNState s) { // System.out.println("LOOK("+s.stateNumber+")"); if ( s==null ) { return null; } IntervalSet[] look = new IntervalSet[s.getNumberOfTransitions()]; for (int alt = 0; alt < s.getNumberOfTransitions(); alt++) { look[alt] = new IntervalSet(); Set<ATNConfig> lookBusy = new HashSet<ATNConfig>(); boolean seeThruPreds = false; // fail to get lookahead upon pred _LOOK(s.transition(alt).target, null, PredictionContext.EMPTY, look[alt], lookBusy, new BitSet(), seeThruPreds, false); // Wipe out lookahead for this alternative if we found nothing // or we had a predicate when we !seeThruPreds if ( look[alt].size()==0 || look[alt].contains(HIT_PRED) ) { look[alt] = null; } } return look; }
Compute set of tokens that can follow s in the ATN in the specified ctx.

If ctx is null and the end of the rule containing s is reached, Token.EPSILON is added to the result set. If ctx is not null and the end of the outermost rule is reached, Token.EOF is added to the result set.

Params:
  • s – the ATN state
  • ctx – the complete parser context, or null if the context should be ignored
Returns:The set of tokens that can follow s in the ATN in the specified ctx.
/** * Compute set of tokens that can follow {@code s} in the ATN in the * specified {@code ctx}. * * <p>If {@code ctx} is {@code null} and the end of the rule containing * {@code s} is reached, {@link Token#EPSILON} is added to the result set. * If {@code ctx} is not {@code null} and the end of the outermost rule is * reached, {@link Token#EOF} is added to the result set.</p> * * @param s the ATN state * @param ctx the complete parser context, or {@code null} if the context * should be ignored * * @return The set of tokens that can follow {@code s} in the ATN in the * specified {@code ctx}. */
public IntervalSet LOOK(ATNState s, RuleContext ctx) { return LOOK(s, null, ctx); }
Compute set of tokens that can follow s in the ATN in the specified ctx.

If ctx is null and the end of the rule containing s is reached, Token.EPSILON is added to the result set. If ctx is not null and the end of the outermost rule is reached, Token.EOF is added to the result set.

Params:
  • s – the ATN state
  • stopState – the ATN state to stop at. This can be a BlockEndState to detect epsilon paths through a closure.
  • ctx – the complete parser context, or null if the context should be ignored
Returns:The set of tokens that can follow s in the ATN in the specified ctx.
/** * Compute set of tokens that can follow {@code s} in the ATN in the * specified {@code ctx}. * * <p>If {@code ctx} is {@code null} and the end of the rule containing * {@code s} is reached, {@link Token#EPSILON} is added to the result set. * If {@code ctx} is not {@code null} and the end of the outermost rule is * reached, {@link Token#EOF} is added to the result set.</p> * * @param s the ATN state * @param stopState the ATN state to stop at. This can be a * {@link BlockEndState} to detect epsilon paths through a closure. * @param ctx the complete parser context, or {@code null} if the context * should be ignored * * @return The set of tokens that can follow {@code s} in the ATN in the * specified {@code ctx}. */
public IntervalSet LOOK(ATNState s, ATNState stopState, RuleContext ctx) { IntervalSet r = new IntervalSet(); boolean seeThruPreds = true; // ignore preds; get all lookahead PredictionContext lookContext = ctx != null ? PredictionContext.fromRuleContext(s.atn, ctx) : null; _LOOK(s, stopState, lookContext, r, new HashSet<ATNConfig>(), new BitSet(), seeThruPreds, true); return r; }
Compute set of tokens that can follow s in the ATN in the specified ctx.

If ctx is null and stopState or the end of the rule containing s is reached, Token.EPSILON is added to the result set. If ctx is not null and addEOF is true and stopState or the end of the outermost rule is reached, Token.EOF is added to the result set.

Params:
  • s – the ATN state.
  • stopState – the ATN state to stop at. This can be a BlockEndState to detect epsilon paths through a closure.
  • ctx – The outer context, or null if the outer context should not be used.
  • look – The result lookahead set.
  • lookBusy – A set used for preventing epsilon closures in the ATN from causing a stack overflow. Outside code should pass new HashSet<ATNConfig> for this argument.
  • calledRuleStack – A set used for preventing left recursion in the ATN from causing a stack overflow. Outside code should pass new BitSet() for this argument.
  • seeThruPreds – true to true semantic predicates as implicitly true and "see through them", otherwise false to treat semantic predicates as opaque and add HIT_PRED to the result if one is encountered.
  • addEOF – Add Token.EOF to the result if the end of the outermost context is reached. This parameter has no effect if ctx is null.
/** * Compute set of tokens that can follow {@code s} in the ATN in the * specified {@code ctx}. * * <p>If {@code ctx} is {@code null} and {@code stopState} or the end of the * rule containing {@code s} is reached, {@link Token#EPSILON} is added to * the result set. If {@code ctx} is not {@code null} and {@code addEOF} is * {@code true} and {@code stopState} or the end of the outermost rule is * reached, {@link Token#EOF} is added to the result set.</p> * * @param s the ATN state. * @param stopState the ATN state to stop at. This can be a * {@link BlockEndState} to detect epsilon paths through a closure. * @param ctx The outer context, or {@code null} if the outer context should * not be used. * @param look The result lookahead set. * @param lookBusy A set used for preventing epsilon closures in the ATN * from causing a stack overflow. Outside code should pass * {@code new HashSet<ATNConfig>} for this argument. * @param calledRuleStack A set used for preventing left recursion in the * ATN from causing a stack overflow. Outside code should pass * {@code new BitSet()} for this argument. * @param seeThruPreds {@code true} to true semantic predicates as * implicitly {@code true} and "see through them", otherwise {@code false} * to treat semantic predicates as opaque and add {@link #HIT_PRED} to the * result if one is encountered. * @param addEOF Add {@link Token#EOF} to the result if the end of the * outermost context is reached. This parameter has no effect if {@code ctx} * is {@code null}. */
protected void _LOOK(ATNState s, ATNState stopState, PredictionContext ctx, IntervalSet look, Set<ATNConfig> lookBusy, BitSet calledRuleStack, boolean seeThruPreds, boolean addEOF) { // System.out.println("_LOOK("+s.stateNumber+", ctx="+ctx); ATNConfig c = new ATNConfig(s, 0, ctx); if ( !lookBusy.add(c) ) return; if (s == stopState) { if (ctx == null) { look.add(Token.EPSILON); return; } else if (ctx.isEmpty() && addEOF) { look.add(Token.EOF); return; } } if ( s instanceof RuleStopState ) { if ( ctx==null ) { look.add(Token.EPSILON); return; } else if (ctx.isEmpty() && addEOF) { look.add(Token.EOF); return; } if ( ctx != PredictionContext.EMPTY ) { // run thru all possible stack tops in ctx boolean removed = calledRuleStack.get(s.ruleIndex); try { calledRuleStack.clear(s.ruleIndex); for (int i = 0; i < ctx.size(); i++) { ATNState returnState = atn.states.get(ctx.getReturnState(i)); // System.out.println("popping back to "+retState); _LOOK(returnState, stopState, ctx.getParent(i), look, lookBusy, calledRuleStack, seeThruPreds, addEOF); } } finally { if (removed) { calledRuleStack.set(s.ruleIndex); } } return; } } int n = s.getNumberOfTransitions(); for (int i=0; i<n; i++) { Transition t = s.transition(i); if ( t.getClass() == RuleTransition.class ) { if (calledRuleStack.get(((RuleTransition)t).target.ruleIndex)) { continue; } PredictionContext newContext = SingletonPredictionContext.create(ctx, ((RuleTransition)t).followState.stateNumber); try { calledRuleStack.set(((RuleTransition)t).target.ruleIndex); _LOOK(t.target, stopState, newContext, look, lookBusy, calledRuleStack, seeThruPreds, addEOF); } finally { calledRuleStack.clear(((RuleTransition)t).target.ruleIndex); } } else if ( t instanceof AbstractPredicateTransition ) { if ( seeThruPreds ) { _LOOK(t.target, stopState, ctx, look, lookBusy, calledRuleStack, seeThruPreds, addEOF); } else { look.add(HIT_PRED); } } else if ( t.isEpsilon() ) { _LOOK(t.target, stopState, ctx, look, lookBusy, calledRuleStack, seeThruPreds, addEOF); } else if ( t.getClass() == WildcardTransition.class ) { look.addAll( IntervalSet.of(Token.MIN_USER_TOKEN_TYPE, atn.maxTokenType) ); } else { // System.out.println("adding "+ t); IntervalSet set = t.label(); if (set != null) { if (t instanceof NotSetTransition) { set = set.complement(IntervalSet.of(Token.MIN_USER_TOKEN_TYPE, atn.maxTokenType)); } look.addAll(set); } } } } }