/*
 * Copyright (c) 2012-2017 The ANTLR Project. All rights reserved.
 * Use of this file is governed by the BSD 3-clause license that
 * can be found in the LICENSE.txt file in the project root.
 */

package org.antlr.v4.runtime;

import org.antlr.v4.runtime.atn.ATN;
import org.antlr.v4.runtime.atn.ATNState;
import org.antlr.v4.runtime.atn.ActionTransition;
import org.antlr.v4.runtime.atn.AtomTransition;
import org.antlr.v4.runtime.atn.DecisionState;
import org.antlr.v4.runtime.atn.LoopEndState;
import org.antlr.v4.runtime.atn.ParserATNSimulator;
import org.antlr.v4.runtime.atn.PrecedencePredicateTransition;
import org.antlr.v4.runtime.atn.PredicateTransition;
import org.antlr.v4.runtime.atn.PredictionContextCache;
import org.antlr.v4.runtime.atn.RuleStartState;
import org.antlr.v4.runtime.atn.RuleTransition;
import org.antlr.v4.runtime.atn.StarLoopEntryState;
import org.antlr.v4.runtime.atn.Transition;
import org.antlr.v4.runtime.dfa.DFA;
import org.antlr.v4.runtime.misc.Pair;

import java.util.ArrayDeque;
import java.util.Collection;
import java.util.Deque;

A parser simulator that mimics what ANTLR's generated parser code does. A ParserATNSimulator is used to make predictions via adaptivePredict but this class moves a pointer through the ATN to simulate parsing. ParserATNSimulator just makes us efficient rather than having to backtrack, for example. This properly creates parse trees even for left recursive rules. We rely on the left recursive rule invocation and special predicate transitions to make left recursive rules work. See TestParserInterpreter for examples.
/** A parser simulator that mimics what ANTLR's generated * parser code does. A ParserATNSimulator is used to make * predictions via adaptivePredict but this class moves a pointer through the * ATN to simulate parsing. ParserATNSimulator just * makes us efficient rather than having to backtrack, for example. * * This properly creates parse trees even for left recursive rules. * * We rely on the left recursive rule invocation and special predicate * transitions to make left recursive rules work. * * See TestParserInterpreter for examples. */
public class ParserInterpreter extends Parser { protected final String grammarFileName; protected final ATN atn; protected final DFA[] decisionToDFA; // not shared like it is for generated parsers protected final PredictionContextCache sharedContextCache = new PredictionContextCache(); @Deprecated protected final String[] tokenNames; protected final String[] ruleNames; private final Vocabulary vocabulary;
This stack corresponds to the _parentctx, _parentState pair of locals that would exist on call stack frames with a recursive descent parser; in the generated function for a left-recursive rule you'd see: private EContext e(int _p) throws RecognitionException { ParserRuleContext _parentctx = _ctx; // Pair.a int _parentState = getState(); // Pair.b ... } Those values are used to create new recursive rule invocation contexts associated with left operand of an alt like "expr '*' expr".
/** This stack corresponds to the _parentctx, _parentState pair of locals * that would exist on call stack frames with a recursive descent parser; * in the generated function for a left-recursive rule you'd see: * * private EContext e(int _p) throws RecognitionException { * ParserRuleContext _parentctx = _ctx; // Pair.a * int _parentState = getState(); // Pair.b * ... * } * * Those values are used to create new recursive rule invocation contexts * associated with left operand of an alt like "expr '*' expr". */
protected final Deque<Pair<ParserRuleContext, Integer>> _parentContextStack = new ArrayDeque<Pair<ParserRuleContext, Integer>>();
We need a map from (decision,inputIndex)->forced alt for computing ambiguous parse trees. For now, we allow exactly one override.
/** We need a map from (decision,inputIndex)->forced alt for computing ambiguous * parse trees. For now, we allow exactly one override. */
protected int overrideDecision = -1; protected int overrideDecisionInputIndex = -1; protected int overrideDecisionAlt = -1; protected boolean overrideDecisionReached = false; // latch and only override once; error might trigger infinite loop
What is the current context when we override a decisions? This tells us what the root of the parse tree is when using override for an ambiguity/lookahead check.
/** What is the current context when we override a decisions? This tells * us what the root of the parse tree is when using override * for an ambiguity/lookahead check. */
protected InterpreterRuleContext overrideDecisionRoot = null; protected InterpreterRuleContext rootContext;
Deprecated:Use ParserInterpreter(String, Vocabulary, Collection<String>, ATN, TokenStream) instead.
/** * @deprecated Use {@link #ParserInterpreter(String, Vocabulary, Collection, ATN, TokenStream)} instead. */
@Deprecated public ParserInterpreter(String grammarFileName, Collection<String> tokenNames, Collection<String> ruleNames, ATN atn, TokenStream input) { this(grammarFileName, VocabularyImpl.fromTokenNames(tokenNames.toArray(new String[tokenNames.size()])), ruleNames, atn, input); } public ParserInterpreter(String grammarFileName, Vocabulary vocabulary, Collection<String> ruleNames, ATN atn, TokenStream input) { super(input); this.grammarFileName = grammarFileName; this.atn = atn; this.tokenNames = new String[atn.maxTokenType]; for (int i = 0; i < tokenNames.length; i++) { tokenNames[i] = vocabulary.getDisplayName(i); } this.ruleNames = ruleNames.toArray(new String[ruleNames.size()]); this.vocabulary = vocabulary; // init decision DFA int numberOfDecisions = atn.getNumberOfDecisions(); this.decisionToDFA = new DFA[numberOfDecisions]; for (int i = 0; i < numberOfDecisions; i++) { DecisionState decisionState = atn.getDecisionState(i); decisionToDFA[i] = new DFA(decisionState, i); } // get atn simulator that knows how to do predictions setInterpreter(new ParserATNSimulator(this, atn, decisionToDFA, sharedContextCache)); } @Override public void reset() { super.reset(); overrideDecisionReached = false; overrideDecisionRoot = null; } @Override public ATN getATN() { return atn; } @Override @Deprecated public String[] getTokenNames() { return tokenNames; } @Override public Vocabulary getVocabulary() { return vocabulary; } @Override public String[] getRuleNames() { return ruleNames; } @Override public String getGrammarFileName() { return grammarFileName; }
Begin parsing at startRuleIndex
/** Begin parsing at startRuleIndex */
public ParserRuleContext parse(int startRuleIndex) { RuleStartState startRuleStartState = atn.ruleToStartState[startRuleIndex]; rootContext = createInterpreterRuleContext(null, ATNState.INVALID_STATE_NUMBER, startRuleIndex); if (startRuleStartState.isLeftRecursiveRule) { enterRecursionRule(rootContext, startRuleStartState.stateNumber, startRuleIndex, 0); } else { enterRule(rootContext, startRuleStartState.stateNumber, startRuleIndex); } while ( true ) { ATNState p = getATNState(); switch ( p.getStateType() ) { case ATNState.RULE_STOP : // pop; return from rule if ( _ctx.isEmpty() ) { if (startRuleStartState.isLeftRecursiveRule) { ParserRuleContext result = _ctx; Pair<ParserRuleContext, Integer> parentContext = _parentContextStack.pop(); unrollRecursionContexts(parentContext.a); return result; } else { exitRule(); return rootContext; } } visitRuleStopState(p); break; default : try { visitState(p); } catch (RecognitionException e) { setState(atn.ruleToStopState[p.ruleIndex].stateNumber); getContext().exception = e; getErrorHandler().reportError(this, e); recover(e); } break; } } } @Override public void enterRecursionRule(ParserRuleContext localctx, int state, int ruleIndex, int precedence) { Pair<ParserRuleContext, Integer> pair = new Pair<ParserRuleContext, Integer>(_ctx, localctx.invokingState); _parentContextStack.push(pair); super.enterRecursionRule(localctx, state, ruleIndex, precedence); } protected ATNState getATNState() { return atn.states.get(getState()); } protected void visitState(ATNState p) { // System.out.println("visitState "+p.stateNumber); int predictedAlt = 1; if ( p instanceof DecisionState ) { predictedAlt = visitDecisionState((DecisionState) p); } Transition transition = p.transition(predictedAlt - 1); switch (transition.getSerializationType()) { case Transition.EPSILON: if ( p.getStateType()==ATNState.STAR_LOOP_ENTRY && ((StarLoopEntryState)p).isPrecedenceDecision && !(transition.target instanceof LoopEndState)) { // We are at the start of a left recursive rule's (...)* loop // and we're not taking the exit branch of loop. InterpreterRuleContext localctx = createInterpreterRuleContext(_parentContextStack.peek().a, _parentContextStack.peek().b, _ctx.getRuleIndex()); pushNewRecursionContext(localctx, atn.ruleToStartState[p.ruleIndex].stateNumber, _ctx.getRuleIndex()); } break; case Transition.ATOM: match(((AtomTransition)transition).label); break; case Transition.RANGE: case Transition.SET: case Transition.NOT_SET: if (!transition.matches(_input.LA(1), Token.MIN_USER_TOKEN_TYPE, 65535)) { recoverInline(); } matchWildcard(); break; case Transition.WILDCARD: matchWildcard(); break; case Transition.RULE: RuleStartState ruleStartState = (RuleStartState)transition.target; int ruleIndex = ruleStartState.ruleIndex; InterpreterRuleContext newctx = createInterpreterRuleContext(_ctx, p.stateNumber, ruleIndex); if (ruleStartState.isLeftRecursiveRule) { enterRecursionRule(newctx, ruleStartState.stateNumber, ruleIndex, ((RuleTransition)transition).precedence); } else { enterRule(newctx, transition.target.stateNumber, ruleIndex); } break; case Transition.PREDICATE: PredicateTransition predicateTransition = (PredicateTransition)transition; if (!sempred(_ctx, predicateTransition.ruleIndex, predicateTransition.predIndex)) { throw new FailedPredicateException(this); } break; case Transition.ACTION: ActionTransition actionTransition = (ActionTransition)transition; action(_ctx, actionTransition.ruleIndex, actionTransition.actionIndex); break; case Transition.PRECEDENCE: if (!precpred(_ctx, ((PrecedencePredicateTransition)transition).precedence)) { throw new FailedPredicateException(this, String.format("precpred(_ctx, %d)", ((PrecedencePredicateTransition)transition).precedence)); } break; default: throw new UnsupportedOperationException("Unrecognized ATN transition type."); } setState(transition.target.stateNumber); }
Method visitDecisionState() is called when the interpreter reaches a decision state (instance of DecisionState). It gives an opportunity for subclasses to track interesting things.
/** Method visitDecisionState() is called when the interpreter reaches * a decision state (instance of DecisionState). It gives an opportunity * for subclasses to track interesting things. */
protected int visitDecisionState(DecisionState p) { int predictedAlt = 1; if ( p.getNumberOfTransitions()>1 ) { getErrorHandler().sync(this); int decision = p.decision; if ( decision == overrideDecision && _input.index() == overrideDecisionInputIndex && !overrideDecisionReached ) { predictedAlt = overrideDecisionAlt; overrideDecisionReached = true; } else { predictedAlt = getInterpreter().adaptivePredict(_input, decision, _ctx); } } return predictedAlt; }
Provide simple "factory" for InterpreterRuleContext's. @since 4.5.1
/** Provide simple "factory" for InterpreterRuleContext's. * @since 4.5.1 */
protected InterpreterRuleContext createInterpreterRuleContext( ParserRuleContext parent, int invokingStateNumber, int ruleIndex) { return new InterpreterRuleContext(parent, invokingStateNumber, ruleIndex); } protected void visitRuleStopState(ATNState p) { RuleStartState ruleStartState = atn.ruleToStartState[p.ruleIndex]; if (ruleStartState.isLeftRecursiveRule) { Pair<ParserRuleContext, Integer> parentContext = _parentContextStack.pop(); unrollRecursionContexts(parentContext.a); setState(parentContext.b); } else { exitRule(); } RuleTransition ruleTransition = (RuleTransition)atn.states.get(getState()).transition(0); setState(ruleTransition.followState.stateNumber); }
Override this parser interpreters normal decision-making process at a particular decision and input token index. Instead of allowing the adaptive prediction mechanism to choose the first alternative within a block that leads to a successful parse, force it to take the alternative, 1..n for n alternatives. As an implementation limitation right now, you can only specify one override. This is sufficient to allow construction of different parse trees for ambiguous input. It means re-parsing the entire input in general because you're never sure where an ambiguous sequence would live in the various parse trees. For example, in one interpretation, an ambiguous input sequence would be matched completely in expression but in another it could match all the way back to the root. s : e '!'? ; e : ID | ID '!' ; Here, x! can be matched as (s (e ID) !) or (s (e ID !)). In the first case, the ambiguous sequence is fully contained only by the root. In the second case, the ambiguous sequences fully contained within just e, as in: (e ID !). Rather than trying to optimize this and make some intelligent decisions for optimization purposes, I settled on just re-parsing the whole input and then using {link Trees#getRootOfSubtreeEnclosingRegion} to find the minimal subtree that contains the ambiguous sequence. I originally tried to record the call stack at the point the parser detected and ambiguity but left recursive rules create a parse tree stack that does not reflect the actual call stack. That impedance mismatch was enough to make it it challenging to restart the parser at a deeply nested rule invocation. Only parser interpreters can override decisions so as to avoid inserting override checking code in the critical ALL(*) prediction execution path. @since 4.5.1
/** Override this parser interpreters normal decision-making process * at a particular decision and input token index. Instead of * allowing the adaptive prediction mechanism to choose the * first alternative within a block that leads to a successful parse, * force it to take the alternative, 1..n for n alternatives. * * As an implementation limitation right now, you can only specify one * override. This is sufficient to allow construction of different * parse trees for ambiguous input. It means re-parsing the entire input * in general because you're never sure where an ambiguous sequence would * live in the various parse trees. For example, in one interpretation, * an ambiguous input sequence would be matched completely in expression * but in another it could match all the way back to the root. * * s : e '!'? ; * e : ID * | ID '!' * ; * * Here, x! can be matched as (s (e ID) !) or (s (e ID !)). In the first * case, the ambiguous sequence is fully contained only by the root. * In the second case, the ambiguous sequences fully contained within just * e, as in: (e ID !). * * Rather than trying to optimize this and make * some intelligent decisions for optimization purposes, I settled on * just re-parsing the whole input and then using * {link Trees#getRootOfSubtreeEnclosingRegion} to find the minimal * subtree that contains the ambiguous sequence. I originally tried to * record the call stack at the point the parser detected and ambiguity but * left recursive rules create a parse tree stack that does not reflect * the actual call stack. That impedance mismatch was enough to make * it it challenging to restart the parser at a deeply nested rule * invocation. * * Only parser interpreters can override decisions so as to avoid inserting * override checking code in the critical ALL(*) prediction execution path. * * @since 4.5.1 */
public void addDecisionOverride(int decision, int tokenIndex, int forcedAlt) { overrideDecision = decision; overrideDecisionInputIndex = tokenIndex; overrideDecisionAlt = forcedAlt; } public InterpreterRuleContext getOverrideDecisionRoot() { return overrideDecisionRoot; }
Rely on the error handler for this parser but, if no tokens are consumed to recover, add an error node. Otherwise, nothing is seen in the parse tree.
/** Rely on the error handler for this parser but, if no tokens are consumed * to recover, add an error node. Otherwise, nothing is seen in the parse * tree. */
protected void recover(RecognitionException e) { int i = _input.index(); getErrorHandler().recover(this, e); if ( _input.index()==i ) { // no input consumed, better add an error node if ( e instanceof InputMismatchException ) { InputMismatchException ime = (InputMismatchException)e; Token tok = e.getOffendingToken(); int expectedTokenType = Token.INVALID_TYPE; if ( !ime.getExpectedTokens().isNil() ) { expectedTokenType = ime.getExpectedTokens().getMinElement(); // get any element } Token errToken = getTokenFactory().create(new Pair<TokenSource, CharStream>(tok.getTokenSource(), tok.getTokenSource().getInputStream()), expectedTokenType, tok.getText(), Token.DEFAULT_CHANNEL, -1, -1, // invalid start/stop tok.getLine(), tok.getCharPositionInLine()); _ctx.addErrorNode(createErrorNode(_ctx,errToken)); } else { // NoViableAlt Token tok = e.getOffendingToken(); Token errToken = getTokenFactory().create(new Pair<TokenSource, CharStream>(tok.getTokenSource(), tok.getTokenSource().getInputStream()), Token.INVALID_TYPE, tok.getText(), Token.DEFAULT_CHANNEL, -1, -1, // invalid start/stop tok.getLine(), tok.getCharPositionInLine()); _ctx.addErrorNode(createErrorNode(_ctx,errToken)); } } } protected Token recoverInline() { return _errHandler.recoverInline(this); }
Return the root of the parse, which can be useful if the parser bails out. You still can access the top node. Note that, because of the way left recursive rules add children, it's possible that the root will not have any children if the start rule immediately called and left recursive rule that fails.
Since:4.5.1
/** Return the root of the parse, which can be useful if the parser * bails out. You still can access the top node. Note that, * because of the way left recursive rules add children, it's possible * that the root will not have any children if the start rule immediately * called and left recursive rule that fails. * * @since 4.5.1 */
public InterpreterRuleContext getRootContext() { return rootContext; } }