package org.graalvm.compiler.nodes.calc;
import static org.graalvm.compiler.nodeinfo.NodeCycles.CYCLES_1;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import org.graalvm.compiler.core.common.LIRKind;
import org.graalvm.compiler.core.common.type.ArithmeticStamp;
import org.graalvm.compiler.core.common.type.FloatStamp;
import org.graalvm.compiler.core.common.type.IntegerStamp;
import org.graalvm.compiler.core.common.type.Stamp;
import org.graalvm.compiler.core.common.type.StampFactory;
import org.graalvm.compiler.graph.NodeClass;
import org.graalvm.compiler.graph.spi.CanonicalizerTool;
import org.graalvm.compiler.lir.gen.ArithmeticLIRGeneratorTool;
import org.graalvm.compiler.nodeinfo.NodeInfo;
import org.graalvm.compiler.nodes.ConstantNode;
import org.graalvm.compiler.nodes.ValueNode;
import org.graalvm.compiler.nodes.spi.ArithmeticLIRLowerable;
import org.graalvm.compiler.nodes.spi.NodeLIRBuilderTool;
import jdk.vm.ci.code.CodeUtil;
import jdk.vm.ci.meta.JavaKind;
import jdk.vm.ci.meta.SerializableConstant;
@NodeInfo(cycles = CYCLES_1)
public final class ReinterpretNode extends UnaryNode implements ArithmeticLIRLowerable {
public static final NodeClass<ReinterpretNode> TYPE = NodeClass.create(ReinterpretNode.class);
public ReinterpretNode(JavaKind to, ValueNode value) {
this(StampFactory.forKind(to), value);
}
public ReinterpretNode(Stamp to, ValueNode value) {
super(TYPE, getReinterpretStamp(to, value.stamp()), value);
assert to instanceof ArithmeticStamp;
}
private SerializableConstant evalConst(SerializableConstant c) {
ByteBuffer buffer = ByteBuffer.wrap(new byte[c.getSerializedSize()]).order(ByteOrder.nativeOrder());
c.serialize(buffer);
buffer.rewind();
SerializableConstant ret = ((ArithmeticStamp) stamp()).deserialize(buffer);
assert !buffer.hasRemaining();
return ret;
}
@Override
public ValueNode canonical(CanonicalizerTool tool, ValueNode forValue) {
if (forValue.isConstant()) {
return ConstantNode.forConstant(stamp(), evalConst((SerializableConstant) forValue.asConstant()), null);
}
if (stamp().isCompatible(forValue.stamp())) {
return forValue;
}
if (forValue instanceof ReinterpretNode) {
ReinterpretNode reinterpret = (ReinterpretNode) forValue;
return new ReinterpretNode(stamp(), reinterpret.getValue());
}
return this;
}
private static IntegerStamp floatToInt(FloatStamp stamp) {
int bits = stamp.getBits();
long signBit = 1L << (bits - 1);
long exponentMask;
if (bits == 64) {
exponentMask = Double.doubleToRawLongBits(Double.POSITIVE_INFINITY);
} else {
assert bits == 32;
exponentMask = Float.floatToRawIntBits(Float.POSITIVE_INFINITY);
}
long positiveInfinity = exponentMask;
long negativeInfinity = CodeUtil.signExtend(signBit | positiveInfinity, bits);
long negativeZero = CodeUtil.signExtend(signBit | 0, bits);
if (stamp.isNaN()) {
return new IntegerStamp(bits, negativeInfinity + 1, CodeUtil.maxValue(bits), exponentMask, CodeUtil.mask(bits));
}
long upperBound;
if (stamp.isNonNaN()) {
if (stamp.upperBound() < 0.0) {
if (stamp.lowerBound() > Double.NEGATIVE_INFINITY) {
upperBound = negativeInfinity - 1;
} else {
upperBound = negativeInfinity;
}
} else if (stamp.upperBound() == 0.0) {
upperBound = 0;
} else if (stamp.upperBound() < Double.POSITIVE_INFINITY) {
upperBound = positiveInfinity - 1;
} else {
upperBound = positiveInfinity;
}
} else {
upperBound = CodeUtil.maxValue(bits);
}
long lowerBound;
if (stamp.lowerBound() > 0.0) {
if (stamp.isNonNaN()) {
lowerBound = 1;
} else {
lowerBound = negativeInfinity + 1;
}
} else if (stamp.upperBound() == Double.NEGATIVE_INFINITY) {
lowerBound = negativeInfinity;
} else if (stamp.upperBound() < 0.0) {
lowerBound = negativeZero + 1;
} else {
lowerBound = negativeZero;
}
return StampFactory.forInteger(bits, lowerBound, upperBound);
}
private static FloatStamp intToFloat(IntegerStamp stamp) {
int bits = stamp.getBits();
double minPositive;
double maxPositive;
long signBit = 1L << (bits - 1);
long exponentMask;
if (bits == 64) {
exponentMask = Double.doubleToRawLongBits(Double.POSITIVE_INFINITY);
minPositive = Double.MIN_VALUE;
maxPositive = Double.MAX_VALUE;
} else {
assert bits == 32;
exponentMask = Float.floatToRawIntBits(Float.POSITIVE_INFINITY);
minPositive = Float.MIN_VALUE;
maxPositive = Float.MAX_VALUE;
}
long significandMask = CodeUtil.mask(bits) & ~(signBit | exponentMask);
long positiveInfinity = exponentMask;
long negativeInfinity = CodeUtil.signExtend(signBit | positiveInfinity, bits);
long negativeZero = CodeUtil.signExtend(signBit | 0, bits);
if ((stamp.downMask() & exponentMask) == exponentMask && (stamp.downMask() & significandMask) != 0) {
return new FloatStamp(bits, Double.NaN, Double.NaN, false);
}
double upperBound;
if (stamp.upperBound() < negativeInfinity) {
if (stamp.lowerBound() > negativeZero) {
upperBound = -minPositive;
} else {
upperBound = -0.0;
}
} else if (stamp.upperBound() < 0) {
if (stamp.lowerBound() > negativeInfinity) {
return new FloatStamp(bits, Double.NaN, Double.NaN, false);
} else if (stamp.lowerBound() == negativeInfinity) {
upperBound = Double.NEGATIVE_INFINITY;
} else if (stamp.lowerBound() > negativeZero) {
upperBound = -minPositive;
} else {
upperBound = -0.0;
}
} else if (stamp.upperBound() == 0) {
upperBound = 0.0;
} else if (stamp.upperBound() < positiveInfinity) {
upperBound = maxPositive;
} else {
upperBound = Double.POSITIVE_INFINITY;
}
double lowerBound;
if (stamp.lowerBound() > positiveInfinity) {
return new FloatStamp(bits, Double.NaN, Double.NaN, false);
} else if (stamp.lowerBound() == positiveInfinity) {
lowerBound = Double.POSITIVE_INFINITY;
} else if (stamp.lowerBound() > 0) {
lowerBound = minPositive;
} else if (stamp.lowerBound() > negativeInfinity) {
lowerBound = 0.0;
} else {
lowerBound = Double.NEGATIVE_INFINITY;
}
boolean nonNaN;
if ((stamp.upMask() & exponentMask) != exponentMask) {
nonNaN = true;
} else {
boolean negativeNaNBlock = stamp.lowerBound() < 0 && stamp.upperBound() > negativeInfinity;
boolean positiveNaNBlock = stamp.upperBound() > positiveInfinity;
nonNaN = !negativeNaNBlock && !positiveNaNBlock;
}
return new FloatStamp(bits, lowerBound, upperBound, nonNaN);
}
private static Stamp getReinterpretStamp(Stamp toStamp, Stamp fromStamp) {
if (toStamp instanceof IntegerStamp && fromStamp instanceof FloatStamp) {
return floatToInt((FloatStamp) fromStamp);
} else if (toStamp instanceof FloatStamp && fromStamp instanceof IntegerStamp) {
return intToFloat((IntegerStamp) fromStamp);
} else {
return toStamp;
}
}
@Override
public boolean inferStamp() {
return updateStamp(getReinterpretStamp(stamp(), getValue().stamp()));
}
@Override
public void generate(NodeLIRBuilderTool builder, ArithmeticLIRGeneratorTool gen) {
LIRKind kind = builder.getLIRGeneratorTool().getLIRKind(stamp());
builder.setResult(this, gen.emitReinterpret(kind, builder.operand(getValue())));
}
public static ValueNode reinterpret(JavaKind toKind, ValueNode value) {
return value.graph().unique(new ReinterpretNode(toKind, value));
}
@NodeIntrinsic
public static native float reinterpret(@ConstantNodeParameter JavaKind kind, int value);
@NodeIntrinsic
public static native int reinterpret(@ConstantNodeParameter JavaKind kind, float value);
@NodeIntrinsic
public static native double reinterpret(@ConstantNodeParameter JavaKind kind, long value);
@NodeIntrinsic
public static native long reinterpret(@ConstantNodeParameter JavaKind kind, double value);
}