/*
* Copyright (c) 2002, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package sun.security.util;
import java.util.*;
import java.lang.ref.*;
Abstract base class and factory for caches. A cache is a key-value mapping.
It has properties that make it more suitable for caching than a Map.
The factory methods can be used to obtain two different implementations.
They have the following properties:
. keys and values reside in memory
. keys and values must be non-null
. maximum size. Replacements are made in LRU order.
. optional lifetime, specified in seconds.
. safe for concurrent use by multiple threads
. values are held by either standard references or via SoftReferences.
SoftReferences have the advantage that they are automatically cleared
by the garbage collector in response to memory demand. This makes it
possible to simple set the maximum size to a very large value and let
the GC automatically size the cache dynamically depending on the
amount of available memory.
However, note that because of the way SoftReferences are implemented in
HotSpot at the moment, this may not work perfectly as it clears them fairly
eagerly. Performance may be improved if the Java heap size is set to larger
value using e.g. java -ms64M -mx128M foo.Test
Cache sizing: the memory cache is implemented on top of a LinkedHashMap.
In its current implementation, the number of buckets (NOT entries) in
(Linked)HashMaps is always a power of two. It is recommended to set the
maximum cache size to value that uses those buckets fully. For example,
if a cache with somewhere between 500 and 1000 entries is desired, a
maximum size of 750 would be a good choice: try 1024 buckets, with a
load factor of 0.75f, the number of entries can be calculated as
buckets / 4 * 3. As mentioned above, with a SoftReference cache, it is
generally reasonable to set the size to a fairly large value.
Author: Andreas Sterbenz
/**
* Abstract base class and factory for caches. A cache is a key-value mapping.
* It has properties that make it more suitable for caching than a Map.
*
* The factory methods can be used to obtain two different implementations.
* They have the following properties:
*
* . keys and values reside in memory
*
* . keys and values must be non-null
*
* . maximum size. Replacements are made in LRU order.
*
* . optional lifetime, specified in seconds.
*
* . safe for concurrent use by multiple threads
*
* . values are held by either standard references or via SoftReferences.
* SoftReferences have the advantage that they are automatically cleared
* by the garbage collector in response to memory demand. This makes it
* possible to simple set the maximum size to a very large value and let
* the GC automatically size the cache dynamically depending on the
* amount of available memory.
*
* However, note that because of the way SoftReferences are implemented in
* HotSpot at the moment, this may not work perfectly as it clears them fairly
* eagerly. Performance may be improved if the Java heap size is set to larger
* value using e.g. java -ms64M -mx128M foo.Test
*
* Cache sizing: the memory cache is implemented on top of a LinkedHashMap.
* In its current implementation, the number of buckets (NOT entries) in
* (Linked)HashMaps is always a power of two. It is recommended to set the
* maximum cache size to value that uses those buckets fully. For example,
* if a cache with somewhere between 500 and 1000 entries is desired, a
* maximum size of 750 would be a good choice: try 1024 buckets, with a
* load factor of 0.75f, the number of entries can be calculated as
* buckets / 4 * 3. As mentioned above, with a SoftReference cache, it is
* generally reasonable to set the size to a fairly large value.
*
* @author Andreas Sterbenz
*/
public abstract class Cache<K,V> {
protected Cache() {
// empty
}
Return the number of currently valid entries in the cache.
/**
* Return the number of currently valid entries in the cache.
*/
public abstract int size();
Remove all entries from the cache.
/**
* Remove all entries from the cache.
*/
public abstract void clear();
Add an entry to the cache.
/**
* Add an entry to the cache.
*/
public abstract void put(K key, V value);
Get a value from the cache.
/**
* Get a value from the cache.
*/
public abstract V get(Object key);
Remove an entry from the cache.
/**
* Remove an entry from the cache.
*/
public abstract void remove(Object key);
Set the maximum size.
/**
* Set the maximum size.
*/
public abstract void setCapacity(int size);
Set the timeout(in seconds).
/**
* Set the timeout(in seconds).
*/
public abstract void setTimeout(int timeout);
accept a visitor
/**
* accept a visitor
*/
public abstract void accept(CacheVisitor<K,V> visitor);
Return a new memory cache with the specified maximum size, unlimited
lifetime for entries, with the values held by SoftReferences.
/**
* Return a new memory cache with the specified maximum size, unlimited
* lifetime for entries, with the values held by SoftReferences.
*/
public static <K,V> Cache<K,V> newSoftMemoryCache(int size) {
return new MemoryCache<>(true, size);
}
Return a new memory cache with the specified maximum size, the
specified maximum lifetime (in seconds), with the values held
by SoftReferences.
/**
* Return a new memory cache with the specified maximum size, the
* specified maximum lifetime (in seconds), with the values held
* by SoftReferences.
*/
public static <K,V> Cache<K,V> newSoftMemoryCache(int size, int timeout) {
return new MemoryCache<>(true, size, timeout);
}
Return a new memory cache with the specified maximum size, unlimited
lifetime for entries, with the values held by standard references.
/**
* Return a new memory cache with the specified maximum size, unlimited
* lifetime for entries, with the values held by standard references.
*/
public static <K,V> Cache<K,V> newHardMemoryCache(int size) {
return new MemoryCache<>(false, size);
}
Return a dummy cache that does nothing.
/**
* Return a dummy cache that does nothing.
*/
@SuppressWarnings("unchecked")
public static <K,V> Cache<K,V> newNullCache() {
return (Cache<K,V>) NullCache.INSTANCE;
}
Return a new memory cache with the specified maximum size, the
specified maximum lifetime (in seconds), with the values held
by standard references.
/**
* Return a new memory cache with the specified maximum size, the
* specified maximum lifetime (in seconds), with the values held
* by standard references.
*/
public static <K,V> Cache<K,V> newHardMemoryCache(int size, int timeout) {
return new MemoryCache<>(false, size, timeout);
}
Utility class that wraps a byte array and implements the equals()
and hashCode() contract in a way suitable for Maps and caches.
/**
* Utility class that wraps a byte array and implements the equals()
* and hashCode() contract in a way suitable for Maps and caches.
*/
public static class EqualByteArray {
private final byte[] b;
private volatile int hash;
public EqualByteArray(byte[] b) {
this.b = b;
}
public int hashCode() {
int h = hash;
if (h == 0) {
h = b.length + 1;
for (int i = 0; i < b.length; i++) {
h += (b[i] & 0xff) * 37;
}
hash = h;
}
return h;
}
public boolean equals(Object obj) {
if (this == obj) {
return true;
}
if (obj instanceof EqualByteArray == false) {
return false;
}
EqualByteArray other = (EqualByteArray)obj;
return Arrays.equals(this.b, other.b);
}
}
public interface CacheVisitor<K,V> {
public void visit(Map<K,V> map);
}
}
class NullCache<K,V> extends Cache<K,V> {
static final Cache<Object,Object> INSTANCE = new NullCache<>();
private NullCache() {
// empty
}
public int size() {
return 0;
}
public void clear() {
// empty
}
public void put(K key, V value) {
// empty
}
public V get(Object key) {
return null;
}
public void remove(Object key) {
// empty
}
public void setCapacity(int size) {
// empty
}
public void setTimeout(int timeout) {
// empty
}
public void accept(CacheVisitor<K,V> visitor) {
// empty
}
}
class MemoryCache<K,V> extends Cache<K,V> {
private static final float LOAD_FACTOR = 0.75f;
// XXXX
private static final boolean DEBUG = false;
private final Map<K, CacheEntry<K,V>> cacheMap;
private int maxSize;
private long lifetime;
// ReferenceQueue is of type V instead of Cache<K,V>
// to allow SoftCacheEntry to extend SoftReference<V>
private final ReferenceQueue<V> queue;
public MemoryCache(boolean soft, int maxSize) {
this(soft, maxSize, 0);
}
public MemoryCache(boolean soft, int maxSize, int lifetime) {
this.maxSize = maxSize;
this.lifetime = lifetime * 1000;
if (soft)
this.queue = new ReferenceQueue<>();
else
this.queue = null;
int buckets = (int)(maxSize / LOAD_FACTOR) + 1;
cacheMap = new LinkedHashMap<>(buckets, LOAD_FACTOR, true);
}
Empty the reference queue and remove all corresponding entries
from the cache.
This method should be called at the beginning of each public
method.
/**
* Empty the reference queue and remove all corresponding entries
* from the cache.
*
* This method should be called at the beginning of each public
* method.
*/
private void emptyQueue() {
if (queue == null) {
return;
}
int startSize = cacheMap.size();
while (true) {
@SuppressWarnings("unchecked")
CacheEntry<K,V> entry = (CacheEntry<K,V>)queue.poll();
if (entry == null) {
break;
}
K key = entry.getKey();
if (key == null) {
// key is null, entry has already been removed
continue;
}
CacheEntry<K,V> currentEntry = cacheMap.remove(key);
// check if the entry in the map corresponds to the expired
// entry. If not, readd the entry
if ((currentEntry != null) && (entry != currentEntry)) {
cacheMap.put(key, currentEntry);
}
}
if (DEBUG) {
int endSize = cacheMap.size();
if (startSize != endSize) {
System.out.println("*** Expunged " + (startSize - endSize)
+ " entries, " + endSize + " entries left");
}
}
}
Scan all entries and remove all expired ones.
/**
* Scan all entries and remove all expired ones.
*/
private void expungeExpiredEntries() {
emptyQueue();
if (lifetime == 0) {
return;
}
int cnt = 0;
long time = System.currentTimeMillis();
for (Iterator<CacheEntry<K,V>> t = cacheMap.values().iterator();
t.hasNext(); ) {
CacheEntry<K,V> entry = t.next();
if (entry.isValid(time) == false) {
t.remove();
cnt++;
}
}
if (DEBUG) {
if (cnt != 0) {
System.out.println("Removed " + cnt
+ " expired entries, remaining " + cacheMap.size());
}
}
}
public synchronized int size() {
expungeExpiredEntries();
return cacheMap.size();
}
public synchronized void clear() {
if (queue != null) {
// if this is a SoftReference cache, first invalidate() all
// entries so that GC does not have to enqueue them
for (CacheEntry<K,V> entry : cacheMap.values()) {
entry.invalidate();
}
while (queue.poll() != null) {
// empty
}
}
cacheMap.clear();
}
public synchronized void put(K key, V value) {
emptyQueue();
long expirationTime = (lifetime == 0) ? 0 :
System.currentTimeMillis() + lifetime;
CacheEntry<K,V> newEntry = newEntry(key, value, expirationTime, queue);
CacheEntry<K,V> oldEntry = cacheMap.put(key, newEntry);
if (oldEntry != null) {
oldEntry.invalidate();
return;
}
if (maxSize > 0 && cacheMap.size() > maxSize) {
expungeExpiredEntries();
if (cacheMap.size() > maxSize) { // still too large?
Iterator<CacheEntry<K,V>> t = cacheMap.values().iterator();
CacheEntry<K,V> lruEntry = t.next();
if (DEBUG) {
System.out.println("** Overflow removal "
+ lruEntry.getKey() + " | " + lruEntry.getValue());
}
t.remove();
lruEntry.invalidate();
}
}
}
public synchronized V get(Object key) {
emptyQueue();
CacheEntry<K,V> entry = cacheMap.get(key);
if (entry == null) {
return null;
}
long time = (lifetime == 0) ? 0 : System.currentTimeMillis();
if (entry.isValid(time) == false) {
if (DEBUG) {
System.out.println("Ignoring expired entry");
}
cacheMap.remove(key);
return null;
}
return entry.getValue();
}
public synchronized void remove(Object key) {
emptyQueue();
CacheEntry<K,V> entry = cacheMap.remove(key);
if (entry != null) {
entry.invalidate();
}
}
public synchronized void setCapacity(int size) {
expungeExpiredEntries();
if (size > 0 && cacheMap.size() > size) {
Iterator<CacheEntry<K,V>> t = cacheMap.values().iterator();
for (int i = cacheMap.size() - size; i > 0; i--) {
CacheEntry<K,V> lruEntry = t.next();
if (DEBUG) {
System.out.println("** capacity reset removal "
+ lruEntry.getKey() + " | " + lruEntry.getValue());
}
t.remove();
lruEntry.invalidate();
}
}
maxSize = size > 0 ? size : 0;
if (DEBUG) {
System.out.println("** capacity reset to " + size);
}
}
public synchronized void setTimeout(int timeout) {
emptyQueue();
lifetime = timeout > 0 ? timeout * 1000L : 0L;
if (DEBUG) {
System.out.println("** lifetime reset to " + timeout);
}
}
// it is a heavyweight method.
public synchronized void accept(CacheVisitor<K,V> visitor) {
expungeExpiredEntries();
Map<K,V> cached = getCachedEntries();
visitor.visit(cached);
}
private Map<K,V> getCachedEntries() {
Map<K,V> kvmap = new HashMap<>(cacheMap.size());
for (CacheEntry<K,V> entry : cacheMap.values()) {
kvmap.put(entry.getKey(), entry.getValue());
}
return kvmap;
}
protected CacheEntry<K,V> newEntry(K key, V value,
long expirationTime, ReferenceQueue<V> queue) {
if (queue != null) {
return new SoftCacheEntry<>(key, value, expirationTime, queue);
} else {
return new HardCacheEntry<>(key, value, expirationTime);
}
}
private static interface CacheEntry<K,V> {
boolean isValid(long currentTime);
void invalidate();
K getKey();
V getValue();
}
private static class HardCacheEntry<K,V> implements CacheEntry<K,V> {
private K key;
private V value;
private long expirationTime;
HardCacheEntry(K key, V value, long expirationTime) {
this.key = key;
this.value = value;
this.expirationTime = expirationTime;
}
public K getKey() {
return key;
}
public V getValue() {
return value;
}
public boolean isValid(long currentTime) {
boolean valid = (currentTime <= expirationTime);
if (valid == false) {
invalidate();
}
return valid;
}
public void invalidate() {
key = null;
value = null;
expirationTime = -1;
}
}
private static class SoftCacheEntry<K,V>
extends SoftReference<V>
implements CacheEntry<K,V> {
private K key;
private long expirationTime;
SoftCacheEntry(K key, V value, long expirationTime,
ReferenceQueue<V> queue) {
super(value, queue);
this.key = key;
this.expirationTime = expirationTime;
}
public K getKey() {
return key;
}
public V getValue() {
return get();
}
public boolean isValid(long currentTime) {
boolean valid = (currentTime <= expirationTime) && (get() != null);
if (valid == false) {
invalidate();
}
return valid;
}
public void invalidate() {
clear();
key = null;
expirationTime = -1;
}
}
}