/*
* Copyright (c) 1996, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package sun.security.ssl;
import java.io.*;
import java.nio.*;
import java.util.Arrays;
import javax.net.ssl.SSLException;
import sun.security.util.HexDumpEncoder;
OutputRecord
takes care of the management of SSL/TLS/DTLS output records, including buffering, encryption, handshake messages marshal, etc. Author: David Brownell
/**
* {@code OutputRecord} takes care of the management of SSL/TLS/DTLS output
* records, including buffering, encryption, handshake messages marshal, etc.
*
* @author David Brownell
*/
abstract class OutputRecord extends ByteArrayOutputStream
implements Record, Closeable {
/* Class and subclass dynamic debugging support */
static final Debug debug = Debug.getInstance("ssl");
Authenticator writeAuthenticator;
CipherBox writeCipher;
HandshakeHash handshakeHash;
boolean firstMessage;
// current protocol version, sent as record version
ProtocolVersion protocolVersion;
// version for the ClientHello message. Only relevant if this is a
// client handshake record. If set to ProtocolVersion.SSL20Hello,
// the V3 client hello is converted to V2 format.
ProtocolVersion helloVersion;
// Is it the first application record to write?
boolean isFirstAppOutputRecord = true;
// packet size
int packetSize;
// fragment size
int fragmentSize;
// closed or not?
boolean isClosed;
/*
* Mappings from V3 cipher suite encodings to their pure V2 equivalents.
* This is taken from the SSL V3 specification, Appendix E.
*/
private static int[] V3toV2CipherMap1 =
{-1, -1, -1, 0x02, 0x01, -1, 0x04, 0x05, -1, 0x06, 0x07};
private static int[] V3toV2CipherMap3 =
{-1, -1, -1, 0x80, 0x80, -1, 0x80, 0x80, -1, 0x40, 0xC0};
OutputRecord() {
this.writeCipher = CipherBox.NULL;
this.firstMessage = true;
this.fragmentSize = Record.maxDataSize;
// Please set packetSize and protocolVersion in the implementation.
}
void setVersion(ProtocolVersion protocolVersion) {
this.protocolVersion = protocolVersion;
}
/*
* Updates helloVersion of this record.
*/
synchronized void setHelloVersion(ProtocolVersion helloVersion) {
this.helloVersion = helloVersion;
}
/*
* For handshaking, we need to be able to hash every byte above the
* record marking layer. This is where we're guaranteed to see those
* bytes, so this is where we can hash them.
*/
void setHandshakeHash(HandshakeHash handshakeHash) {
this.handshakeHash = handshakeHash;
}
/*
* Return true iff the record is empty -- to avoid doing the work
* of sending empty records over the network.
*/
boolean isEmpty() {
return false;
}
boolean seqNumIsHuge() {
return (writeAuthenticator != null) &&
writeAuthenticator.seqNumIsHuge();
}
// SSLEngine and SSLSocket
abstract void encodeAlert(byte level, byte description) throws IOException;
// SSLEngine and SSLSocket
abstract void encodeHandshake(byte[] buffer,
int offset, int length) throws IOException;
// SSLEngine and SSLSocket
abstract void encodeChangeCipherSpec() throws IOException;
// apply to SSLEngine only
Ciphertext encode(ByteBuffer[] sources, int offset, int length,
ByteBuffer destination) throws IOException {
throw new UnsupportedOperationException();
}
// apply to SSLEngine only
void encodeV2NoCipher() throws IOException {
throw new UnsupportedOperationException();
}
// apply to SSLSocket only
void deliver(byte[] source, int offset, int length) throws IOException {
throw new UnsupportedOperationException();
}
// apply to SSLSocket only
void setDeliverStream(OutputStream outputStream) {
throw new UnsupportedOperationException();
}
// apply to SSLEngine only
Ciphertext acquireCiphertext(ByteBuffer destination) throws IOException {
throw new UnsupportedOperationException();
}
void changeWriteCiphers(Authenticator writeAuthenticator,
CipherBox writeCipher) throws IOException {
encodeChangeCipherSpec();
/*
* Dispose of any intermediate state in the underlying cipher.
* For PKCS11 ciphers, this will release any attached sessions,
* and thus make finalization faster.
*
* Since MAC's doFinal() is called for every SSL/TLS packet, it's
* not necessary to do the same with MAC's.
*/
writeCipher.dispose();
this.writeAuthenticator = writeAuthenticator;
this.writeCipher = writeCipher;
this.isFirstAppOutputRecord = true;
}
void changePacketSize(int packetSize) {
this.packetSize = packetSize;
}
void changeFragmentSize(int fragmentSize) {
this.fragmentSize = fragmentSize;
}
int getMaxPacketSize() {
return packetSize;
}
// apply to DTLS SSLEngine
void initHandshaker() {
// blank
}
// apply to DTLS SSLEngine
void launchRetransmission() {
// blank
}
@Override
public synchronized void close() throws IOException {
if (!isClosed) {
isClosed = true;
writeCipher.dispose();
}
}
//
// shared helpers
//
// Encrypt a fragment and wrap up a record.
//
// To be consistent with the spec of SSLEngine.wrap() methods, the
// destination ByteBuffer's position is updated to reflect the amount
// of data produced. The limit remains the same.
static long encrypt(Authenticator authenticator,
CipherBox encCipher, byte contentType, ByteBuffer destination,
int headerOffset, int dstLim, int headerSize,
ProtocolVersion protocolVersion, boolean isDTLS) {
byte[] sequenceNumber = null;
int dstContent = destination.position();
// Acquire the current sequence number before using.
if (isDTLS) {
sequenceNumber = authenticator.sequenceNumber();
}
// The sequence number may be shared for different purpose.
boolean sharedSequenceNumber = false;
// "flip" but skip over header again, add MAC & encrypt
if (authenticator instanceof MAC) {
MAC signer = (MAC)authenticator;
if (signer.MAClen() != 0) {
byte[] hash = signer.compute(contentType, destination, false);
/*
* position was advanced to limit in MAC compute above.
*
* Mark next area as writable (above layers should have
* established that we have plenty of room), then write
* out the hash.
*/
destination.limit(destination.limit() + hash.length);
destination.put(hash);
// reset the position and limit
destination.limit(destination.position());
destination.position(dstContent);
// The signer has used and increased the sequence number.
if (isDTLS) {
sharedSequenceNumber = true;
}
}
}
if (!encCipher.isNullCipher()) {
if (protocolVersion.useTLS11PlusSpec() &&
(encCipher.isCBCMode() || encCipher.isAEADMode())) {
byte[] nonce = encCipher.createExplicitNonce(
authenticator, contentType, destination.remaining());
destination.position(headerOffset + headerSize);
destination.put(nonce);
}
if (!encCipher.isAEADMode()) {
// The explicit IV in TLS 1.1 and later can be encrypted.
destination.position(headerOffset + headerSize);
} // Otherwise, DON'T encrypt the nonce_explicit for AEAD mode
// Encrypt may pad, so again the limit may be changed.
encCipher.encrypt(destination, dstLim);
// The cipher has used and increased the sequence number.
if (isDTLS && encCipher.isAEADMode()) {
sharedSequenceNumber = true;
}
} else {
destination.position(destination.limit());
}
// Finish out the record header.
int fragLen = destination.limit() - headerOffset - headerSize;
destination.put(headerOffset, contentType); // content type
destination.put(headerOffset + 1, protocolVersion.major);
destination.put(headerOffset + 2, protocolVersion.minor);
if (!isDTLS) {
// fragment length
destination.put(headerOffset + 3, (byte)(fragLen >> 8));
destination.put(headerOffset + 4, (byte)fragLen);
} else {
// epoch and sequence_number
destination.put(headerOffset + 3, sequenceNumber[0]);
destination.put(headerOffset + 4, sequenceNumber[1]);
destination.put(headerOffset + 5, sequenceNumber[2]);
destination.put(headerOffset + 6, sequenceNumber[3]);
destination.put(headerOffset + 7, sequenceNumber[4]);
destination.put(headerOffset + 8, sequenceNumber[5]);
destination.put(headerOffset + 9, sequenceNumber[6]);
destination.put(headerOffset + 10, sequenceNumber[7]);
// fragment length
destination.put(headerOffset + 11, (byte)(fragLen >> 8));
destination.put(headerOffset + 12, (byte)fragLen);
// Increase the sequence number for next use if it is not shared.
if (!sharedSequenceNumber) {
authenticator.increaseSequenceNumber();
}
}
// Update destination position to reflect the amount of data produced.
destination.position(destination.limit());
return Authenticator.toLong(sequenceNumber);
}
// Encrypt a fragment and wrap up a record.
//
// Uses the internal expandable buf variable and the current
// protocolVersion variable.
void encrypt(Authenticator authenticator,
CipherBox encCipher, byte contentType, int headerSize) {
int position = headerSize + writeCipher.getExplicitNonceSize();
// "flip" but skip over header again, add MAC & encrypt
int macLen = 0;
if (authenticator instanceof MAC) {
MAC signer = (MAC)authenticator;
macLen = signer.MAClen();
if (macLen != 0) {
byte[] hash = signer.compute(contentType,
buf, position, (count - position), false);
write(hash, 0, hash.length);
}
}
if (!encCipher.isNullCipher()) {
// Requires explicit IV/nonce for CBC/AEAD cipher suites for
// TLS 1.1 or later.
if (protocolVersion.useTLS11PlusSpec() &&
(encCipher.isCBCMode() || encCipher.isAEADMode())) {
byte[] nonce = encCipher.createExplicitNonce(
authenticator, contentType, (count - position));
int noncePos = position - nonce.length;
System.arraycopy(nonce, 0, buf, noncePos, nonce.length);
}
if (!encCipher.isAEADMode()) {
// The explicit IV in TLS 1.1 and later can be encrypted.
position = headerSize;
} // Otherwise, DON'T encrypt the nonce_explicit for AEAD mode
// increase buf capacity if necessary
int fragSize = count - position;
int packetSize =
encCipher.calculatePacketSize(fragSize, macLen, headerSize);
if (packetSize > (buf.length - position)) {
byte[] newBuf = new byte[position + packetSize];
System.arraycopy(buf, 0, newBuf, 0, count);
buf = newBuf;
}
// Encrypt may pad, so again the count may be changed.
count = position +
encCipher.encrypt(buf, position, (count - position));
}
// Fill out the header, write it and the message.
int fragLen = count - headerSize;
buf[0] = contentType;
buf[1] = protocolVersion.major;
buf[2] = protocolVersion.minor;
buf[3] = (byte)((fragLen >> 8) & 0xFF);
buf[4] = (byte)(fragLen & 0xFF);
}
static ByteBuffer encodeV2ClientHello(
byte[] fragment, int offset, int length) throws IOException {
int v3SessIdLenOffset = offset + 34; // 2: client_version
// 32: random
int v3SessIdLen = fragment[v3SessIdLenOffset];
int v3CSLenOffset = v3SessIdLenOffset + 1 + v3SessIdLen;
int v3CSLen = ((fragment[v3CSLenOffset] & 0xff) << 8) +
(fragment[v3CSLenOffset + 1] & 0xff);
int cipherSpecs = v3CSLen / 2; // 2: cipher spec size
// Estimate the max V2ClientHello message length
//
// 11: header size
// (cipherSpecs * 6): cipher_specs
// 6: one cipher suite may need 6 bytes, see V3toV2CipherSuite.
// 3: placeholder for the TLS_EMPTY_RENEGOTIATION_INFO_SCSV
// signaling cipher suite
// 32: challenge size
int v2MaxMsgLen = 11 + (cipherSpecs * 6) + 3 + 32;
// Create a ByteBuffer backed by an accessible byte array.
byte[] dstBytes = new byte[v2MaxMsgLen];
ByteBuffer dstBuf = ByteBuffer.wrap(dstBytes);
/*
* Copy over the cipher specs. We don't care about actually
* translating them for use with an actual V2 server since
* we only talk V3. Therefore, just copy over the V3 cipher
* spec values with a leading 0.
*/
int v3CSOffset = v3CSLenOffset + 2; // skip length field
int v2CSLen = 0;
dstBuf.position(11);
boolean containsRenegoInfoSCSV = false;
for (int i = 0; i < cipherSpecs; i++) {
byte byte1, byte2;
byte1 = fragment[v3CSOffset++];
byte2 = fragment[v3CSOffset++];
v2CSLen += V3toV2CipherSuite(dstBuf, byte1, byte2);
if (!containsRenegoInfoSCSV &&
byte1 == (byte)0x00 && byte2 == (byte)0xFF) {
containsRenegoInfoSCSV = true;
}
}
if (!containsRenegoInfoSCSV) {
v2CSLen += V3toV2CipherSuite(dstBuf, (byte)0x00, (byte)0xFF);
}
/*
* Copy in the nonce.
*/
dstBuf.put(fragment, (offset + 2), 32);
/*
* Build the first part of the V3 record header from the V2 one
* that's now buffered up. (Lengths are fixed up later).
*/
int msgLen = dstBuf.position() - 2; // Exclude the legth field itself
dstBuf.position(0);
dstBuf.put((byte)(0x80 | ((msgLen >>> 8) & 0xFF))); // pos: 0
dstBuf.put((byte)(msgLen & 0xFF)); // pos: 1
dstBuf.put(HandshakeMessage.ht_client_hello); // pos: 2
dstBuf.put(fragment[offset]); // major version, pos: 3
dstBuf.put(fragment[offset + 1]); // minor version, pos: 4
dstBuf.put((byte)(v2CSLen >>> 8)); // pos: 5
dstBuf.put((byte)(v2CSLen & 0xFF)); // pos: 6
dstBuf.put((byte)0x00); // session_id_length, pos: 7
dstBuf.put((byte)0x00); // pos: 8
dstBuf.put((byte)0x00); // challenge_length, pos: 9
dstBuf.put((byte)32); // pos: 10
dstBuf.position(0);
dstBuf.limit(msgLen + 2);
return dstBuf;
}
private static int V3toV2CipherSuite(ByteBuffer dstBuf,
byte byte1, byte byte2) {
dstBuf.put((byte)0);
dstBuf.put(byte1);
dstBuf.put(byte2);
if (((byte2 & 0xff) > 0xA) || (V3toV2CipherMap1[byte2] == -1)) {
return 3;
}
dstBuf.put((byte)V3toV2CipherMap1[byte2]);
dstBuf.put((byte)0);
dstBuf.put((byte)V3toV2CipherMap3[byte2]);
return 6;
}
}