/*
 * Copyright (c) 1996, 2016, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package jdk.internal.math;

import java.util.Arrays;
import java.util.regex.*;

A class for converting between ASCII and decimal representations of a single or double precision floating point number. Most conversions are provided via static convenience methods, although a BinaryToASCIIConverter instance may be obtained and reused.
/** * A class for converting between ASCII and decimal representations of a single * or double precision floating point number. Most conversions are provided via * static convenience methods, although a <code>BinaryToASCIIConverter</code> * instance may be obtained and reused. */
public class FloatingDecimal{ // // Constants of the implementation; // most are IEEE-754 related. // (There are more really boring constants at the end.) // static final int EXP_SHIFT = DoubleConsts.SIGNIFICAND_WIDTH - 1; static final long FRACT_HOB = ( 1L<<EXP_SHIFT ); // assumed High-Order bit static final long EXP_ONE = ((long)DoubleConsts.EXP_BIAS)<<EXP_SHIFT; // exponent of 1.0 static final int MAX_SMALL_BIN_EXP = 62; static final int MIN_SMALL_BIN_EXP = -( 63 / 3 ); static final int MAX_DECIMAL_DIGITS = 15; static final int MAX_DECIMAL_EXPONENT = 308; static final int MIN_DECIMAL_EXPONENT = -324; static final int BIG_DECIMAL_EXPONENT = 324; // i.e. abs(MIN_DECIMAL_EXPONENT) static final int MAX_NDIGITS = 1100; static final int SINGLE_EXP_SHIFT = FloatConsts.SIGNIFICAND_WIDTH - 1; static final int SINGLE_FRACT_HOB = 1<<SINGLE_EXP_SHIFT; static final int SINGLE_MAX_DECIMAL_DIGITS = 7; static final int SINGLE_MAX_DECIMAL_EXPONENT = 38; static final int SINGLE_MIN_DECIMAL_EXPONENT = -45; static final int SINGLE_MAX_NDIGITS = 200; static final int INT_DECIMAL_DIGITS = 9;
Converts a double precision floating point value to a String.
Params:
  • d – The double precision value.
Returns:The value converted to a String.
/** * Converts a double precision floating point value to a <code>String</code>. * * @param d The double precision value. * @return The value converted to a <code>String</code>. */
public static String toJavaFormatString(double d) { return getBinaryToASCIIConverter(d).toJavaFormatString(); }
Converts a single precision floating point value to a String.
Params:
  • f – The single precision value.
Returns:The value converted to a String.
/** * Converts a single precision floating point value to a <code>String</code>. * * @param f The single precision value. * @return The value converted to a <code>String</code>. */
public static String toJavaFormatString(float f) { return getBinaryToASCIIConverter(f).toJavaFormatString(); }
Appends a double precision floating point value to an Appendable.
Params:
  • d – The double precision value.
  • buf – The Appendable with the value appended.
/** * Appends a double precision floating point value to an <code>Appendable</code>. * @param d The double precision value. * @param buf The <code>Appendable</code> with the value appended. */
public static void appendTo(double d, Appendable buf) { getBinaryToASCIIConverter(d).appendTo(buf); }
Appends a single precision floating point value to an Appendable.
Params:
  • f – The single precision value.
  • buf – The Appendable with the value appended.
/** * Appends a single precision floating point value to an <code>Appendable</code>. * @param f The single precision value. * @param buf The <code>Appendable</code> with the value appended. */
public static void appendTo(float f, Appendable buf) { getBinaryToASCIIConverter(f).appendTo(buf); }
Converts a String to a double precision floating point value.
Params:
  • s – The String to convert.
Throws:
Returns:The double precision value.
/** * Converts a <code>String</code> to a double precision floating point value. * * @param s The <code>String</code> to convert. * @return The double precision value. * @throws NumberFormatException If the <code>String</code> does not * represent a properly formatted double precision value. */
public static double parseDouble(String s) throws NumberFormatException { return readJavaFormatString(s).doubleValue(); }
Converts a String to a single precision floating point value.
Params:
  • s – The String to convert.
Throws:
Returns:The single precision value.
/** * Converts a <code>String</code> to a single precision floating point value. * * @param s The <code>String</code> to convert. * @return The single precision value. * @throws NumberFormatException If the <code>String</code> does not * represent a properly formatted single precision value. */
public static float parseFloat(String s) throws NumberFormatException { return readJavaFormatString(s).floatValue(); }
A converter which can process single or double precision floating point values into an ASCII String representation.
/** * A converter which can process single or double precision floating point * values into an ASCII <code>String</code> representation. */
public interface BinaryToASCIIConverter {
Converts a floating point value into an ASCII String.
Returns:The value converted to a String.
/** * Converts a floating point value into an ASCII <code>String</code>. * @return The value converted to a <code>String</code>. */
public String toJavaFormatString();
Appends a floating point value to an Appendable.
Params:
  • buf – The Appendable to receive the value.
/** * Appends a floating point value to an <code>Appendable</code>. * @param buf The <code>Appendable</code> to receive the value. */
public void appendTo(Appendable buf);
Retrieves the decimal exponent most closely corresponding to this value.
Returns:The decimal exponent.
/** * Retrieves the decimal exponent most closely corresponding to this value. * @return The decimal exponent. */
public int getDecimalExponent();
Retrieves the value as an array of digits.
Params:
  • digits – The digit array.
Returns:The number of valid digits copied into the array.
/** * Retrieves the value as an array of digits. * @param digits The digit array. * @return The number of valid digits copied into the array. */
public int getDigits(char[] digits);
Indicates the sign of the value.
Returns:value < 0.0.
/** * Indicates the sign of the value. * @return {@code value < 0.0}. */
public boolean isNegative();
Indicates whether the value is either infinite or not a number.
Returns:true if and only if the value is NaN or infinite.
/** * Indicates whether the value is either infinite or not a number. * * @return <code>true</code> if and only if the value is <code>NaN</code> * or infinite. */
public boolean isExceptional();
Indicates whether the value was rounded up during the binary to ASCII conversion.
Returns:true if and only if the value was rounded up.
/** * Indicates whether the value was rounded up during the binary to ASCII * conversion. * * @return <code>true</code> if and only if the value was rounded up. */
public boolean digitsRoundedUp();
Indicates whether the binary to ASCII conversion was exact.
Returns:true if any only if the conversion was exact.
/** * Indicates whether the binary to ASCII conversion was exact. * * @return <code>true</code> if any only if the conversion was exact. */
public boolean decimalDigitsExact(); }
A BinaryToASCIIConverter which represents NaN and infinite values.
/** * A <code>BinaryToASCIIConverter</code> which represents <code>NaN</code> * and infinite values. */
private static class ExceptionalBinaryToASCIIBuffer implements BinaryToASCIIConverter { private final String image; private boolean isNegative; public ExceptionalBinaryToASCIIBuffer(String image, boolean isNegative) { this.image = image; this.isNegative = isNegative; } @Override public String toJavaFormatString() { return image; } @Override public void appendTo(Appendable buf) { if (buf instanceof StringBuilder) { ((StringBuilder) buf).append(image); } else if (buf instanceof StringBuffer) { ((StringBuffer) buf).append(image); } else { assert false; } } @Override public int getDecimalExponent() { throw new IllegalArgumentException("Exceptional value does not have an exponent"); } @Override public int getDigits(char[] digits) { throw new IllegalArgumentException("Exceptional value does not have digits"); } @Override public boolean isNegative() { return isNegative; } @Override public boolean isExceptional() { return true; } @Override public boolean digitsRoundedUp() { throw new IllegalArgumentException("Exceptional value is not rounded"); } @Override public boolean decimalDigitsExact() { throw new IllegalArgumentException("Exceptional value is not exact"); } } private static final String INFINITY_REP = "Infinity"; private static final int INFINITY_LENGTH = INFINITY_REP.length(); private static final String NAN_REP = "NaN"; private static final int NAN_LENGTH = NAN_REP.length(); private static final BinaryToASCIIConverter B2AC_POSITIVE_INFINITY = new ExceptionalBinaryToASCIIBuffer(INFINITY_REP, false); private static final BinaryToASCIIConverter B2AC_NEGATIVE_INFINITY = new ExceptionalBinaryToASCIIBuffer("-" + INFINITY_REP, true); private static final BinaryToASCIIConverter B2AC_NOT_A_NUMBER = new ExceptionalBinaryToASCIIBuffer(NAN_REP, false); private static final BinaryToASCIIConverter B2AC_POSITIVE_ZERO = new BinaryToASCIIBuffer(false, new char[]{'0'}); private static final BinaryToASCIIConverter B2AC_NEGATIVE_ZERO = new BinaryToASCIIBuffer(true, new char[]{'0'});
A buffered implementation of BinaryToASCIIConverter.
/** * A buffered implementation of <code>BinaryToASCIIConverter</code>. */
static class BinaryToASCIIBuffer implements BinaryToASCIIConverter { private boolean isNegative; private int decExponent; private int firstDigitIndex; private int nDigits; private final char[] digits; private final char[] buffer = new char[26]; // // The fields below provide additional information about the result of // the binary to decimal digits conversion done in dtoa() and roundup() // methods. They are changed if needed by those two methods. // // True if the dtoa() binary to decimal conversion was exact. private boolean exactDecimalConversion = false; // True if the result of the binary to decimal conversion was rounded-up // at the end of the conversion process, i.e. roundUp() method was called. private boolean decimalDigitsRoundedUp = false;
Default constructor; used for non-zero values, BinaryToASCIIBuffer may be thread-local and reused
/** * Default constructor; used for non-zero values, * <code>BinaryToASCIIBuffer</code> may be thread-local and reused */
BinaryToASCIIBuffer(){ this.digits = new char[20]; }
Creates a specialized value (positive and negative zeros).
/** * Creates a specialized value (positive and negative zeros). */
BinaryToASCIIBuffer(boolean isNegative, char[] digits){ this.isNegative = isNegative; this.decExponent = 0; this.digits = digits; this.firstDigitIndex = 0; this.nDigits = digits.length; } @Override public String toJavaFormatString() { int len = getChars(buffer); return new String(buffer, 0, len); } @Override public void appendTo(Appendable buf) { int len = getChars(buffer); if (buf instanceof StringBuilder) { ((StringBuilder) buf).append(buffer, 0, len); } else if (buf instanceof StringBuffer) { ((StringBuffer) buf).append(buffer, 0, len); } else { assert false; } } @Override public int getDecimalExponent() { return decExponent; } @Override public int getDigits(char[] digits) { System.arraycopy(this.digits,firstDigitIndex,digits,0,this.nDigits); return this.nDigits; } @Override public boolean isNegative() { return isNegative; } @Override public boolean isExceptional() { return false; } @Override public boolean digitsRoundedUp() { return decimalDigitsRoundedUp; } @Override public boolean decimalDigitsExact() { return exactDecimalConversion; } private void setSign(boolean isNegative) { this.isNegative = isNegative; }
This is the easy subcase -- all the significant bits, after scaling, are held in lvalue. negSign and decExponent tell us what processing and scaling has already been done. Exceptional cases have already been stripped out. In particular: lvalue is a finite number (not Inf, nor NaN) lvalue > 0L (not zero, nor negative). The only reason that we develop the digits here, rather than calling on Long.toString() is that we can do it a little faster, and besides want to treat trailing 0s specially. If Long.toString changes, we should re-evaluate this strategy!
/** * This is the easy subcase -- * all the significant bits, after scaling, are held in lvalue. * negSign and decExponent tell us what processing and scaling * has already been done. Exceptional cases have already been * stripped out. * In particular: * lvalue is a finite number (not Inf, nor NaN) * lvalue > 0L (not zero, nor negative). * * The only reason that we develop the digits here, rather than * calling on Long.toString() is that we can do it a little faster, * and besides want to treat trailing 0s specially. If Long.toString * changes, we should re-evaluate this strategy! */
private void developLongDigits( int decExponent, long lvalue, int insignificantDigits ){ if ( insignificantDigits != 0 ){ // Discard non-significant low-order bits, while rounding, // up to insignificant value. long pow10 = FDBigInteger.LONG_5_POW[insignificantDigits] << insignificantDigits; // 10^i == 5^i * 2^i; long residue = lvalue % pow10; lvalue /= pow10; decExponent += insignificantDigits; if ( residue >= (pow10>>1) ){ // round up based on the low-order bits we're discarding lvalue++; } } int digitno = digits.length -1; int c; if ( lvalue <= Integer.MAX_VALUE ){ assert lvalue > 0L : lvalue; // lvalue <= 0 // even easier subcase! // can do int arithmetic rather than long! int ivalue = (int)lvalue; c = ivalue%10; ivalue /= 10; while ( c == 0 ){ decExponent++; c = ivalue%10; ivalue /= 10; } while ( ivalue != 0){ digits[digitno--] = (char)(c+'0'); decExponent++; c = ivalue%10; ivalue /= 10; } digits[digitno] = (char)(c+'0'); } else { // same algorithm as above (same bugs, too ) // but using long arithmetic. c = (int)(lvalue%10L); lvalue /= 10L; while ( c == 0 ){ decExponent++; c = (int)(lvalue%10L); lvalue /= 10L; } while ( lvalue != 0L ){ digits[digitno--] = (char)(c+'0'); decExponent++; c = (int)(lvalue%10L); lvalue /= 10; } digits[digitno] = (char)(c+'0'); } this.decExponent = decExponent+1; this.firstDigitIndex = digitno; this.nDigits = this.digits.length - digitno; } private void dtoa( int binExp, long fractBits, int nSignificantBits, boolean isCompatibleFormat) { assert fractBits > 0 ; // fractBits here can't be zero or negative assert (fractBits & FRACT_HOB)!=0 ; // Hi-order bit should be set // Examine number. Determine if it is an easy case, // which we can do pretty trivially using float/long conversion, // or whether we must do real work. final int tailZeros = Long.numberOfTrailingZeros(fractBits); // number of significant bits of fractBits; final int nFractBits = EXP_SHIFT+1-tailZeros; // reset flags to default values as dtoa() does not always set these // flags and a prior call to dtoa() might have set them to incorrect // values with respect to the current state. decimalDigitsRoundedUp = false; exactDecimalConversion = false; // number of significant bits to the right of the point. int nTinyBits = Math.max( 0, nFractBits - binExp - 1 ); if ( binExp <= MAX_SMALL_BIN_EXP && binExp >= MIN_SMALL_BIN_EXP ){ // Look more closely at the number to decide if, // with scaling by 10^nTinyBits, the result will fit in // a long. if ( (nTinyBits < FDBigInteger.LONG_5_POW.length) && ((nFractBits + N_5_BITS[nTinyBits]) < 64 ) ){ // // We can do this: // take the fraction bits, which are normalized. // (a) nTinyBits == 0: Shift left or right appropriately // to align the binary point at the extreme right, i.e. // where a long int point is expected to be. The integer // result is easily converted to a string. // (b) nTinyBits > 0: Shift right by EXP_SHIFT-nFractBits, // which effectively converts to long and scales by // 2^nTinyBits. Then multiply by 5^nTinyBits to // complete the scaling. We know this won't overflow // because we just counted the number of bits necessary // in the result. The integer you get from this can // then be converted to a string pretty easily. // if ( nTinyBits == 0 ) { int insignificant; if ( binExp > nSignificantBits ){ insignificant = insignificantDigitsForPow2(binExp-nSignificantBits-1); } else { insignificant = 0; } if ( binExp >= EXP_SHIFT ){ fractBits <<= (binExp-EXP_SHIFT); } else { fractBits >>>= (EXP_SHIFT-binExp) ; } developLongDigits( 0, fractBits, insignificant ); return; } // // The following causes excess digits to be printed // out in the single-float case. Our manipulation of // halfULP here is apparently not correct. If we // better understand how this works, perhaps we can // use this special case again. But for the time being, // we do not. // else { // fractBits >>>= EXP_SHIFT+1-nFractBits; // fractBits//= long5pow[ nTinyBits ]; // halfULP = long5pow[ nTinyBits ] >> (1+nSignificantBits-nFractBits); // developLongDigits( -nTinyBits, fractBits, insignificantDigits(halfULP) ); // return; // } // } } // // This is the hard case. We are going to compute large positive // integers B and S and integer decExp, s.t. // d = ( B / S )// 10^decExp // 1 <= B / S < 10 // Obvious choices are: // decExp = floor( log10(d) ) // B = d// 2^nTinyBits// 10^max( 0, -decExp ) // S = 10^max( 0, decExp)// 2^nTinyBits // (noting that nTinyBits has already been forced to non-negative) // I am also going to compute a large positive integer // M = (1/2^nSignificantBits)// 2^nTinyBits// 10^max( 0, -decExp ) // i.e. M is (1/2) of the ULP of d, scaled like B. // When we iterate through dividing B/S and picking off the // quotient bits, we will know when to stop when the remainder // is <= M. // // We keep track of powers of 2 and powers of 5. // int decExp = estimateDecExp(fractBits,binExp); int B2, B5; // powers of 2 and powers of 5, respectively, in B int S2, S5; // powers of 2 and powers of 5, respectively, in S int M2, M5; // powers of 2 and powers of 5, respectively, in M B5 = Math.max( 0, -decExp ); B2 = B5 + nTinyBits + binExp; S5 = Math.max( 0, decExp ); S2 = S5 + nTinyBits; M5 = B5; M2 = B2 - nSignificantBits; // // the long integer fractBits contains the (nFractBits) interesting // bits from the mantissa of d ( hidden 1 added if necessary) followed // by (EXP_SHIFT+1-nFractBits) zeros. In the interest of compactness, // I will shift out those zeros before turning fractBits into a // FDBigInteger. The resulting whole number will be // d * 2^(nFractBits-1-binExp). // fractBits >>>= tailZeros; B2 -= nFractBits-1; int common2factor = Math.min( B2, S2 ); B2 -= common2factor; S2 -= common2factor; M2 -= common2factor; // // HACK!! For exact powers of two, the next smallest number // is only half as far away as we think (because the meaning of // ULP changes at power-of-two bounds) for this reason, we // hack M2. Hope this works. // if ( nFractBits == 1 ) { M2 -= 1; } if ( M2 < 0 ){ // oops. // since we cannot scale M down far enough, // we must scale the other values up. B2 -= M2; S2 -= M2; M2 = 0; } // // Construct, Scale, iterate. // Some day, we'll write a stopping test that takes // account of the asymmetry of the spacing of floating-point // numbers below perfect powers of 2 // 26 Sept 96 is not that day. // So we use a symmetric test. // int ndigit = 0; boolean low, high; long lowDigitDifference; int q; // // Detect the special cases where all the numbers we are about // to compute will fit in int or long integers. // In these cases, we will avoid doing FDBigInteger arithmetic. // We use the same algorithms, except that we "normalize" // our FDBigIntegers before iterating. This is to make division easier, // as it makes our fist guess (quotient of high-order words) // more accurate! // // Some day, we'll write a stopping test that takes // account of the asymmetry of the spacing of floating-point // numbers below perfect powers of 2 // 26 Sept 96 is not that day. // So we use a symmetric test. // // binary digits needed to represent B, approx. int Bbits = nFractBits + B2 + (( B5 < N_5_BITS.length )? N_5_BITS[B5] : ( B5*3 )); // binary digits needed to represent 10*S, approx. int tenSbits = S2+1 + (( (S5+1) < N_5_BITS.length )? N_5_BITS[(S5+1)] : ( (S5+1)*3 )); if ( Bbits < 64 && tenSbits < 64){ if ( Bbits < 32 && tenSbits < 32){ // wa-hoo! They're all ints! int b = ((int)fractBits * FDBigInteger.SMALL_5_POW[B5] ) << B2; int s = FDBigInteger.SMALL_5_POW[S5] << S2; int m = FDBigInteger.SMALL_5_POW[M5] << M2; int tens = s * 10; // // Unroll the first iteration. If our decExp estimate // was too high, our first quotient will be zero. In this // case, we discard it and decrement decExp. // ndigit = 0; q = b / s; b = 10 * ( b % s ); m *= 10; low = (b < m ); high = (b+m > tens ); assert q < 10 : q; // excessively large digit if ( (q == 0) && ! high ){ // oops. Usually ignore leading zero. decExp--; } else { digits[ndigit++] = (char)('0' + q); } // // HACK! Java spec sez that we always have at least // one digit after the . in either F- or E-form output. // Thus we will need more than one digit if we're using // E-form // if ( !isCompatibleFormat ||decExp < -3 || decExp >= 8 ){ high = low = false; } while( ! low && ! high ){ q = b / s; b = 10 * ( b % s ); m *= 10; assert q < 10 : q; // excessively large digit if ( m > 0L ){ low = (b < m ); high = (b+m > tens ); } else { // hack -- m might overflow! // in this case, it is certainly > b, // which won't // and b+m > tens, too, since that has overflowed // either! low = true; high = true; } digits[ndigit++] = (char)('0' + q); } lowDigitDifference = (b<<1) - tens; exactDecimalConversion = (b == 0); } else { // still good! they're all longs! long b = (fractBits * FDBigInteger.LONG_5_POW[B5] ) << B2; long s = FDBigInteger.LONG_5_POW[S5] << S2; long m = FDBigInteger.LONG_5_POW[M5] << M2; long tens = s * 10L; // // Unroll the first iteration. If our decExp estimate // was too high, our first quotient will be zero. In this // case, we discard it and decrement decExp. // ndigit = 0; q = (int) ( b / s ); b = 10L * ( b % s ); m *= 10L; low = (b < m ); high = (b+m > tens ); assert q < 10 : q; // excessively large digit if ( (q == 0) && ! high ){ // oops. Usually ignore leading zero. decExp--; } else { digits[ndigit++] = (char)('0' + q); } // // HACK! Java spec sez that we always have at least // one digit after the . in either F- or E-form output. // Thus we will need more than one digit if we're using // E-form // if ( !isCompatibleFormat || decExp < -3 || decExp >= 8 ){ high = low = false; } while( ! low && ! high ){ q = (int) ( b / s ); b = 10 * ( b % s ); m *= 10; assert q < 10 : q; // excessively large digit if ( m > 0L ){ low = (b < m ); high = (b+m > tens ); } else { // hack -- m might overflow! // in this case, it is certainly > b, // which won't // and b+m > tens, too, since that has overflowed // either! low = true; high = true; } digits[ndigit++] = (char)('0' + q); } lowDigitDifference = (b<<1) - tens; exactDecimalConversion = (b == 0); } } else { // // We really must do FDBigInteger arithmetic. // Fist, construct our FDBigInteger initial values. // FDBigInteger Sval = FDBigInteger.valueOfPow52(S5, S2); int shiftBias = Sval.getNormalizationBias(); Sval = Sval.leftShift(shiftBias); // normalize so that division works better FDBigInteger Bval = FDBigInteger.valueOfMulPow52(fractBits, B5, B2 + shiftBias); FDBigInteger Mval = FDBigInteger.valueOfPow52(M5 + 1, M2 + shiftBias + 1); FDBigInteger tenSval = FDBigInteger.valueOfPow52(S5 + 1, S2 + shiftBias + 1); //Sval.mult( 10 ); // // Unroll the first iteration. If our decExp estimate // was too high, our first quotient will be zero. In this // case, we discard it and decrement decExp. // ndigit = 0; q = Bval.quoRemIteration( Sval ); low = (Bval.cmp( Mval ) < 0); high = tenSval.addAndCmp(Bval,Mval)<=0; assert q < 10 : q; // excessively large digit if ( (q == 0) && ! high ){ // oops. Usually ignore leading zero. decExp--; } else { digits[ndigit++] = (char)('0' + q); } // // HACK! Java spec sez that we always have at least // one digit after the . in either F- or E-form output. // Thus we will need more than one digit if we're using // E-form // if (!isCompatibleFormat || decExp < -3 || decExp >= 8 ){ high = low = false; } while( ! low && ! high ){ q = Bval.quoRemIteration( Sval ); assert q < 10 : q; // excessively large digit Mval = Mval.multBy10(); //Mval = Mval.mult( 10 ); low = (Bval.cmp( Mval ) < 0); high = tenSval.addAndCmp(Bval,Mval)<=0; digits[ndigit++] = (char)('0' + q); } if ( high && low ){ Bval = Bval.leftShift(1); lowDigitDifference = Bval.cmp(tenSval); } else { lowDigitDifference = 0L; // this here only for flow analysis! } exactDecimalConversion = (Bval.cmp( FDBigInteger.ZERO ) == 0); } this.decExponent = decExp+1; this.firstDigitIndex = 0; this.nDigits = ndigit; // // Last digit gets rounded based on stopping condition. // if ( high ){ if ( low ){ if ( lowDigitDifference == 0L ){ // it's a tie! // choose based on which digits we like. if ( (digits[firstDigitIndex+nDigits-1]&1) != 0 ) { roundup(); } } else if ( lowDigitDifference > 0 ){ roundup(); } } else { roundup(); } } } // add one to the least significant digit. // in the unlikely event there is a carry out, deal with it. // assert that this will only happen where there // is only one digit, e.g. (float)1e-44 seems to do it. // private void roundup() { int i = (firstDigitIndex + nDigits - 1); int q = digits[i]; if (q == '9') { while (q == '9' && i > firstDigitIndex) { digits[i] = '0'; q = digits[--i]; } if (q == '9') { // carryout! High-order 1, rest 0s, larger exp. decExponent += 1; digits[firstDigitIndex] = '1'; return; } // else fall through. } digits[i] = (char) (q + 1); decimalDigitsRoundedUp = true; }
Estimate decimal exponent. (If it is small-ish, we could double-check.) First, scale the mantissa bits such that 1 <= d2 < 2. We are then going to estimate log10(d2) ~=~ (d2-1.5)/1.5 + log(1.5) and so we can estimate log10(d) ~=~ log10(d2) + binExp * log10(2) take the floor and call it decExp.
/** * Estimate decimal exponent. (If it is small-ish, * we could double-check.) * * First, scale the mantissa bits such that 1 <= d2 < 2. * We are then going to estimate * log10(d2) ~=~ (d2-1.5)/1.5 + log(1.5) * and so we can estimate * log10(d) ~=~ log10(d2) + binExp * log10(2) * take the floor and call it decExp. */
static int estimateDecExp(long fractBits, int binExp) { double d2 = Double.longBitsToDouble( EXP_ONE | ( fractBits & DoubleConsts.SIGNIF_BIT_MASK ) ); double d = (d2-1.5D)*0.289529654D + 0.176091259 + (double)binExp * 0.301029995663981; long dBits = Double.doubleToRawLongBits(d); //can't be NaN here so use raw int exponent = (int)((dBits & DoubleConsts.EXP_BIT_MASK) >> EXP_SHIFT) - DoubleConsts.EXP_BIAS; boolean isNegative = (dBits & DoubleConsts.SIGN_BIT_MASK) != 0; // discover sign if(exponent>=0 && exponent<52) { // hot path long mask = DoubleConsts.SIGNIF_BIT_MASK >> exponent; int r = (int)(( (dBits&DoubleConsts.SIGNIF_BIT_MASK) | FRACT_HOB )>>(EXP_SHIFT-exponent)); return isNegative ? (((mask & dBits) == 0L ) ? -r : -r-1 ) : r; } else if (exponent < 0) { return (((dBits&~DoubleConsts.SIGN_BIT_MASK) == 0) ? 0 : ( (isNegative) ? -1 : 0) ); } else { //if (exponent >= 52) return (int)d; } } private static int insignificantDigits(int insignificant) { int i; for ( i = 0; insignificant >= 10L; i++ ) { insignificant /= 10L; } return i; }
Calculates
insignificantDigitsForPow2(v) == insignificantDigits(1L<
/** * Calculates * <pre> * insignificantDigitsForPow2(v) == insignificantDigits(1L<<v) * </pre> */
private static int insignificantDigitsForPow2(int p2) { if(p2>1 && p2 < insignificantDigitsNumber.length) { return insignificantDigitsNumber[p2]; } return 0; }
If insignificant==(1L << ixd) i = insignificantDigitsNumber[idx] is the same as: int i; for ( i = 0; insignificant >= 10L; i++ ) insignificant /= 10L;
/** * If insignificant==(1L << ixd) * i = insignificantDigitsNumber[idx] is the same as: * int i; * for ( i = 0; insignificant >= 10L; i++ ) * insignificant /= 10L; */
private static int[] insignificantDigitsNumber = { 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19 }; // approximately ceil( log2( long5pow[i] ) ) private static final int[] N_5_BITS = { 0, 3, 5, 7, 10, 12, 14, 17, 19, 21, 24, 26, 28, 31, 33, 35, 38, 40, 42, 45, 47, 49, 52, 54, 56, 59, 61, }; private int getChars(char[] result) { assert nDigits <= 19 : nDigits; // generous bound on size of nDigits int i = 0; if (isNegative) { result[0] = '-'; i = 1; } if (decExponent > 0 && decExponent < 8) { // print digits.digits. int charLength = Math.min(nDigits, decExponent); System.arraycopy(digits, firstDigitIndex, result, i, charLength); i += charLength; if (charLength < decExponent) { charLength = decExponent - charLength; Arrays.fill(result,i,i+charLength,'0'); i += charLength; result[i++] = '.'; result[i++] = '0'; } else { result[i++] = '.'; if (charLength < nDigits) { int t = nDigits - charLength; System.arraycopy(digits, firstDigitIndex+charLength, result, i, t); i += t; } else { result[i++] = '0'; } } } else if (decExponent <= 0 && decExponent > -3) { result[i++] = '0'; result[i++] = '.'; if (decExponent != 0) { Arrays.fill(result, i, i-decExponent, '0'); i -= decExponent; } System.arraycopy(digits, firstDigitIndex, result, i, nDigits); i += nDigits; } else { result[i++] = digits[firstDigitIndex]; result[i++] = '.'; if (nDigits > 1) { System.arraycopy(digits, firstDigitIndex+1, result, i, nDigits - 1); i += nDigits - 1; } else { result[i++] = '0'; } result[i++] = 'E'; int e; if (decExponent <= 0) { result[i++] = '-'; e = -decExponent + 1; } else { e = decExponent - 1; } // decExponent has 1, 2, or 3, digits if (e <= 9) { result[i++] = (char) (e + '0'); } else if (e <= 99) { result[i++] = (char) (e / 10 + '0'); result[i++] = (char) (e % 10 + '0'); } else { result[i++] = (char) (e / 100 + '0'); e %= 100; result[i++] = (char) (e / 10 + '0'); result[i++] = (char) (e % 10 + '0'); } } return i; } } private static final ThreadLocal<BinaryToASCIIBuffer> threadLocalBinaryToASCIIBuffer = new ThreadLocal<BinaryToASCIIBuffer>() { @Override protected BinaryToASCIIBuffer initialValue() { return new BinaryToASCIIBuffer(); } }; private static BinaryToASCIIBuffer getBinaryToASCIIBuffer() { return threadLocalBinaryToASCIIBuffer.get(); }
A converter which can process an ASCII String representation of a single or double precision floating point value into a float or a double.
/** * A converter which can process an ASCII <code>String</code> representation * of a single or double precision floating point value into a * <code>float</code> or a <code>double</code>. */
interface ASCIIToBinaryConverter { double doubleValue(); float floatValue(); }
A ASCIIToBinaryConverter container for a double.
/** * A <code>ASCIIToBinaryConverter</code> container for a <code>double</code>. */
static class PreparedASCIIToBinaryBuffer implements ASCIIToBinaryConverter { private final double doubleVal; private final float floatVal; public PreparedASCIIToBinaryBuffer(double doubleVal, float floatVal) { this.doubleVal = doubleVal; this.floatVal = floatVal; } @Override public double doubleValue() { return doubleVal; } @Override public float floatValue() { return floatVal; } } static final ASCIIToBinaryConverter A2BC_POSITIVE_INFINITY = new PreparedASCIIToBinaryBuffer(Double.POSITIVE_INFINITY, Float.POSITIVE_INFINITY); static final ASCIIToBinaryConverter A2BC_NEGATIVE_INFINITY = new PreparedASCIIToBinaryBuffer(Double.NEGATIVE_INFINITY, Float.NEGATIVE_INFINITY); static final ASCIIToBinaryConverter A2BC_NOT_A_NUMBER = new PreparedASCIIToBinaryBuffer(Double.NaN, Float.NaN); static final ASCIIToBinaryConverter A2BC_POSITIVE_ZERO = new PreparedASCIIToBinaryBuffer(0.0d, 0.0f); static final ASCIIToBinaryConverter A2BC_NEGATIVE_ZERO = new PreparedASCIIToBinaryBuffer(-0.0d, -0.0f);
A buffered implementation of ASCIIToBinaryConverter.
/** * A buffered implementation of <code>ASCIIToBinaryConverter</code>. */
static class ASCIIToBinaryBuffer implements ASCIIToBinaryConverter { boolean isNegative; int decExponent; char digits[]; int nDigits; ASCIIToBinaryBuffer( boolean negSign, int decExponent, char[] digits, int n) { this.isNegative = negSign; this.decExponent = decExponent; this.digits = digits; this.nDigits = n; }
Takes a FloatingDecimal, which we presumably just scanned in, and finds out what its value is, as a double. AS A SIDE EFFECT, SET roundDir TO INDICATE PREFERRED ROUNDING DIRECTION in case the result is really destined for a single-precision float.
/** * Takes a FloatingDecimal, which we presumably just scanned in, * and finds out what its value is, as a double. * * AS A SIDE EFFECT, SET roundDir TO INDICATE PREFERRED * ROUNDING DIRECTION in case the result is really destined * for a single-precision float. */
@Override public double doubleValue() { int kDigits = Math.min(nDigits, MAX_DECIMAL_DIGITS + 1); // // convert the lead kDigits to a long integer. // // (special performance hack: start to do it using int) int iValue = (int) digits[0] - (int) '0'; int iDigits = Math.min(kDigits, INT_DECIMAL_DIGITS); for (int i = 1; i < iDigits; i++) { iValue = iValue * 10 + (int) digits[i] - (int) '0'; } long lValue = (long) iValue; for (int i = iDigits; i < kDigits; i++) { lValue = lValue * 10L + (long) ((int) digits[i] - (int) '0'); } double dValue = (double) lValue; int exp = decExponent - kDigits; // // lValue now contains a long integer with the value of // the first kDigits digits of the number. // dValue contains the (double) of the same. // if (nDigits <= MAX_DECIMAL_DIGITS) { // // possibly an easy case. // We know that the digits can be represented // exactly. And if the exponent isn't too outrageous, // the whole thing can be done with one operation, // thus one rounding error. // Note that all our constructors trim all leading and // trailing zeros, so simple values (including zero) // will always end up here // if (exp == 0 || dValue == 0.0) { return (isNegative) ? -dValue : dValue; // small floating integer } else if (exp >= 0) { if (exp <= MAX_SMALL_TEN) { // // Can get the answer with one operation, // thus one roundoff. // double rValue = dValue * SMALL_10_POW[exp]; return (isNegative) ? -rValue : rValue; } int slop = MAX_DECIMAL_DIGITS - kDigits; if (exp <= MAX_SMALL_TEN + slop) { // // We can multiply dValue by 10^(slop) // and it is still "small" and exact. // Then we can multiply by 10^(exp-slop) // with one rounding. // dValue *= SMALL_10_POW[slop]; double rValue = dValue * SMALL_10_POW[exp - slop]; return (isNegative) ? -rValue : rValue; } // // Else we have a hard case with a positive exp. // } else { if (exp >= -MAX_SMALL_TEN) { // // Can get the answer in one division. // double rValue = dValue / SMALL_10_POW[-exp]; return (isNegative) ? -rValue : rValue; } // // Else we have a hard case with a negative exp. // } } // // Harder cases: // The sum of digits plus exponent is greater than // what we think we can do with one error. // // Start by approximating the right answer by, // naively, scaling by powers of 10. // if (exp > 0) { if (decExponent > MAX_DECIMAL_EXPONENT + 1) { // // Lets face it. This is going to be // Infinity. Cut to the chase. // return (isNegative) ? Double.NEGATIVE_INFINITY : Double.POSITIVE_INFINITY; } if ((exp & 15) != 0) { dValue *= SMALL_10_POW[exp & 15]; } if ((exp >>= 4) != 0) { int j; for (j = 0; exp > 1; j++, exp >>= 1) { if ((exp & 1) != 0) { dValue *= BIG_10_POW[j]; } } // // The reason for the weird exp > 1 condition // in the above loop was so that the last multiply // would get unrolled. We handle it here. // It could overflow. // double t = dValue * BIG_10_POW[j]; if (Double.isInfinite(t)) { // // It did overflow. // Look more closely at the result. // If the exponent is just one too large, // then use the maximum finite as our estimate // value. Else call the result infinity // and punt it. // ( I presume this could happen because // rounding forces the result here to be // an ULP or two larger than // Double.MAX_VALUE ). // t = dValue / 2.0; t *= BIG_10_POW[j]; if (Double.isInfinite(t)) { return (isNegative) ? Double.NEGATIVE_INFINITY : Double.POSITIVE_INFINITY; } t = Double.MAX_VALUE; } dValue = t; } } else if (exp < 0) { exp = -exp; if (decExponent < MIN_DECIMAL_EXPONENT - 1) { // // Lets face it. This is going to be // zero. Cut to the chase. // return (isNegative) ? -0.0 : 0.0; } if ((exp & 15) != 0) { dValue /= SMALL_10_POW[exp & 15]; } if ((exp >>= 4) != 0) { int j; for (j = 0; exp > 1; j++, exp >>= 1) { if ((exp & 1) != 0) { dValue *= TINY_10_POW[j]; } } // // The reason for the weird exp > 1 condition // in the above loop was so that the last multiply // would get unrolled. We handle it here. // It could underflow. // double t = dValue * TINY_10_POW[j]; if (t == 0.0) { // // It did underflow. // Look more closely at the result. // If the exponent is just one too small, // then use the minimum finite as our estimate // value. Else call the result 0.0 // and punt it. // ( I presume this could happen because // rounding forces the result here to be // an ULP or two less than // Double.MIN_VALUE ). // t = dValue * 2.0; t *= TINY_10_POW[j]; if (t == 0.0) { return (isNegative) ? -0.0 : 0.0; } t = Double.MIN_VALUE; } dValue = t; } } // // dValue is now approximately the result. // The hard part is adjusting it, by comparison // with FDBigInteger arithmetic. // Formulate the EXACT big-number result as // bigD0 * 10^exp // if (nDigits > MAX_NDIGITS) { nDigits = MAX_NDIGITS + 1; digits[MAX_NDIGITS] = '1'; } FDBigInteger bigD0 = new FDBigInteger(lValue, digits, kDigits, nDigits); exp = decExponent - nDigits; long ieeeBits = Double.doubleToRawLongBits(dValue); // IEEE-754 bits of double candidate final int B5 = Math.max(0, -exp); // powers of 5 in bigB, value is not modified inside correctionLoop final int D5 = Math.max(0, exp); // powers of 5 in bigD, value is not modified inside correctionLoop bigD0 = bigD0.multByPow52(D5, 0); bigD0.makeImmutable(); // prevent bigD0 modification inside correctionLoop FDBigInteger bigD = null; int prevD2 = 0; correctionLoop: while (true) { // here ieeeBits can't be NaN, Infinity or zero int binexp = (int) (ieeeBits >>> EXP_SHIFT); long bigBbits = ieeeBits & DoubleConsts.SIGNIF_BIT_MASK; if (binexp > 0) { bigBbits |= FRACT_HOB; } else { // Normalize denormalized numbers. assert bigBbits != 0L : bigBbits; // doubleToBigInt(0.0) int leadingZeros = Long.numberOfLeadingZeros(bigBbits); int shift = leadingZeros - (63 - EXP_SHIFT); bigBbits <<= shift; binexp = 1 - shift; } binexp -= DoubleConsts.EXP_BIAS; int lowOrderZeros = Long.numberOfTrailingZeros(bigBbits); bigBbits >>>= lowOrderZeros; final int bigIntExp = binexp - EXP_SHIFT + lowOrderZeros; final int bigIntNBits = EXP_SHIFT + 1 - lowOrderZeros; // // Scale bigD, bigB appropriately for // big-integer operations. // Naively, we multiply by powers of ten // and powers of two. What we actually do // is keep track of the powers of 5 and // powers of 2 we would use, then factor out // common divisors before doing the work. // int B2 = B5; // powers of 2 in bigB int D2 = D5; // powers of 2 in bigD int Ulp2; // powers of 2 in halfUlp. if (bigIntExp >= 0) { B2 += bigIntExp; } else { D2 -= bigIntExp; } Ulp2 = B2; // shift bigB and bigD left by a number s. t. // halfUlp is still an integer. int hulpbias; if (binexp <= -DoubleConsts.EXP_BIAS) { // This is going to be a denormalized number // (if not actually zero). // half an ULP is at 2^-(DoubleConsts.EXP_BIAS+EXP_SHIFT+1) hulpbias = binexp + lowOrderZeros + DoubleConsts.EXP_BIAS; } else { hulpbias = 1 + lowOrderZeros; } B2 += hulpbias; D2 += hulpbias; // if there are common factors of 2, we might just as well // factor them out, as they add nothing useful. int common2 = Math.min(B2, Math.min(D2, Ulp2)); B2 -= common2; D2 -= common2; Ulp2 -= common2; // do multiplications by powers of 5 and 2 FDBigInteger bigB = FDBigInteger.valueOfMulPow52(bigBbits, B5, B2); if (bigD == null || prevD2 != D2) { bigD = bigD0.leftShift(D2); prevD2 = D2; } // // to recap: // bigB is the scaled-big-int version of our floating-point // candidate. // bigD is the scaled-big-int version of the exact value // as we understand it. // halfUlp is 1/2 an ulp of bigB, except for special cases // of exact powers of 2 // // the plan is to compare bigB with bigD, and if the difference // is less than halfUlp, then we're satisfied. Otherwise, // use the ratio of difference to halfUlp to calculate a fudge // factor to add to the floating value, then go 'round again. // FDBigInteger diff; int cmpResult; boolean overvalue; if ((cmpResult = bigB.cmp(bigD)) > 0) { overvalue = true; // our candidate is too big. diff = bigB.leftInplaceSub(bigD); // bigB is not user further - reuse if ((bigIntNBits == 1) && (bigIntExp > -DoubleConsts.EXP_BIAS + 1)) { // candidate is a normalized exact power of 2 and // is too big (larger than Double.MIN_NORMAL). We will be subtracting. // For our purposes, ulp is the ulp of the // next smaller range. Ulp2 -= 1; if (Ulp2 < 0) { // rats. Cannot de-scale ulp this far. // must scale diff in other direction. Ulp2 = 0; diff = diff.leftShift(1); } } } else if (cmpResult < 0) { overvalue = false; // our candidate is too small. diff = bigD.rightInplaceSub(bigB); // bigB is not user further - reuse } else { // the candidate is exactly right! // this happens with surprising frequency break correctionLoop; } cmpResult = diff.cmpPow52(B5, Ulp2); if ((cmpResult) < 0) { // difference is small. // this is close enough break correctionLoop; } else if (cmpResult == 0) { // difference is exactly half an ULP // round to some other value maybe, then finish if ((ieeeBits & 1) != 0) { // half ties to even ieeeBits += overvalue ? -1 : 1; // nextDown or nextUp } break correctionLoop; } else { // difference is non-trivial. // could scale addend by ratio of difference to // halfUlp here, if we bothered to compute that difference. // Most of the time ( I hope ) it is about 1 anyway. ieeeBits += overvalue ? -1 : 1; // nextDown or nextUp if (ieeeBits == 0 || ieeeBits == DoubleConsts.EXP_BIT_MASK) { // 0.0 or Double.POSITIVE_INFINITY break correctionLoop; // oops. Fell off end of range. } continue; // try again. } } if (isNegative) { ieeeBits |= DoubleConsts.SIGN_BIT_MASK; } return Double.longBitsToDouble(ieeeBits); }
Takes a FloatingDecimal, which we presumably just scanned in, and finds out what its value is, as a float. This is distinct from doubleValue() to avoid the extremely unlikely case of a double rounding error, wherein the conversion to double has one rounding error, and the conversion of that double to a float has another rounding error, IN THE WRONG DIRECTION, ( because of the preference to a zero low-order bit ).
/** * Takes a FloatingDecimal, which we presumably just scanned in, * and finds out what its value is, as a float. * This is distinct from doubleValue() to avoid the extremely * unlikely case of a double rounding error, wherein the conversion * to double has one rounding error, and the conversion of that double * to a float has another rounding error, IN THE WRONG DIRECTION, * ( because of the preference to a zero low-order bit ). */
@Override public float floatValue() { int kDigits = Math.min(nDigits, SINGLE_MAX_DECIMAL_DIGITS + 1); // // convert the lead kDigits to an integer. // int iValue = (int) digits[0] - (int) '0'; for (int i = 1; i < kDigits; i++) { iValue = iValue * 10 + (int) digits[i] - (int) '0'; } float fValue = (float) iValue; int exp = decExponent - kDigits; // // iValue now contains an integer with the value of // the first kDigits digits of the number. // fValue contains the (float) of the same. // if (nDigits <= SINGLE_MAX_DECIMAL_DIGITS) { // // possibly an easy case. // We know that the digits can be represented // exactly. And if the exponent isn't too outrageous, // the whole thing can be done with one operation, // thus one rounding error. // Note that all our constructors trim all leading and // trailing zeros, so simple values (including zero) // will always end up here. // if (exp == 0 || fValue == 0.0f) { return (isNegative) ? -fValue : fValue; // small floating integer } else if (exp >= 0) { if (exp <= SINGLE_MAX_SMALL_TEN) { // // Can get the answer with one operation, // thus one roundoff. // fValue *= SINGLE_SMALL_10_POW[exp]; return (isNegative) ? -fValue : fValue; } int slop = SINGLE_MAX_DECIMAL_DIGITS - kDigits; if (exp <= SINGLE_MAX_SMALL_TEN + slop) { // // We can multiply fValue by 10^(slop) // and it is still "small" and exact. // Then we can multiply by 10^(exp-slop) // with one rounding. // fValue *= SINGLE_SMALL_10_POW[slop]; fValue *= SINGLE_SMALL_10_POW[exp - slop]; return (isNegative) ? -fValue : fValue; } // // Else we have a hard case with a positive exp. // } else { if (exp >= -SINGLE_MAX_SMALL_TEN) { // // Can get the answer in one division. // fValue /= SINGLE_SMALL_10_POW[-exp]; return (isNegative) ? -fValue : fValue; } // // Else we have a hard case with a negative exp. // } } else if ((decExponent >= nDigits) && (nDigits + decExponent <= MAX_DECIMAL_DIGITS)) { // // In double-precision, this is an exact floating integer. // So we can compute to double, then shorten to float // with one round, and get the right answer. // // First, finish accumulating digits. // Then convert that integer to a double, multiply // by the appropriate power of ten, and convert to float. // long lValue = (long) iValue; for (int i = kDigits; i < nDigits; i++) { lValue = lValue * 10L + (long) ((int) digits[i] - (int) '0'); } double dValue = (double) lValue; exp = decExponent - nDigits; dValue *= SMALL_10_POW[exp]; fValue = (float) dValue; return (isNegative) ? -fValue : fValue; } // // Harder cases: // The sum of digits plus exponent is greater than // what we think we can do with one error. // // Start by approximating the right answer by, // naively, scaling by powers of 10. // Scaling uses doubles to avoid overflow/underflow. // double dValue = fValue; if (exp > 0) { if (decExponent > SINGLE_MAX_DECIMAL_EXPONENT + 1) { // // Lets face it. This is going to be // Infinity. Cut to the chase. // return (isNegative) ? Float.NEGATIVE_INFINITY : Float.POSITIVE_INFINITY; } if ((exp & 15) != 0) { dValue *= SMALL_10_POW[exp & 15]; } if ((exp >>= 4) != 0) { int j; for (j = 0; exp > 0; j++, exp >>= 1) { if ((exp & 1) != 0) { dValue *= BIG_10_POW[j]; } } } } else if (exp < 0) { exp = -exp; if (decExponent < SINGLE_MIN_DECIMAL_EXPONENT - 1) { // // Lets face it. This is going to be // zero. Cut to the chase. // return (isNegative) ? -0.0f : 0.0f; } if ((exp & 15) != 0) { dValue /= SMALL_10_POW[exp & 15]; } if ((exp >>= 4) != 0) { int j; for (j = 0; exp > 0; j++, exp >>= 1) { if ((exp & 1) != 0) { dValue *= TINY_10_POW[j]; } } } } fValue = Math.max(Float.MIN_VALUE, Math.min(Float.MAX_VALUE, (float) dValue)); // // fValue is now approximately the result. // The hard part is adjusting it, by comparison // with FDBigInteger arithmetic. // Formulate the EXACT big-number result as // bigD0 * 10^exp // if (nDigits > SINGLE_MAX_NDIGITS) { nDigits = SINGLE_MAX_NDIGITS + 1; digits[SINGLE_MAX_NDIGITS] = '1'; } FDBigInteger bigD0 = new FDBigInteger(iValue, digits, kDigits, nDigits); exp = decExponent - nDigits; int ieeeBits = Float.floatToRawIntBits(fValue); // IEEE-754 bits of float candidate final int B5 = Math.max(0, -exp); // powers of 5 in bigB, value is not modified inside correctionLoop final int D5 = Math.max(0, exp); // powers of 5 in bigD, value is not modified inside correctionLoop bigD0 = bigD0.multByPow52(D5, 0); bigD0.makeImmutable(); // prevent bigD0 modification inside correctionLoop FDBigInteger bigD = null; int prevD2 = 0; correctionLoop: while (true) { // here ieeeBits can't be NaN, Infinity or zero int binexp = ieeeBits >>> SINGLE_EXP_SHIFT; int bigBbits = ieeeBits & FloatConsts.SIGNIF_BIT_MASK; if (binexp > 0) { bigBbits |= SINGLE_FRACT_HOB; } else { // Normalize denormalized numbers. assert bigBbits != 0 : bigBbits; // floatToBigInt(0.0) int leadingZeros = Integer.numberOfLeadingZeros(bigBbits); int shift = leadingZeros - (31 - SINGLE_EXP_SHIFT); bigBbits <<= shift; binexp = 1 - shift; } binexp -= FloatConsts.EXP_BIAS; int lowOrderZeros = Integer.numberOfTrailingZeros(bigBbits); bigBbits >>>= lowOrderZeros; final int bigIntExp = binexp - SINGLE_EXP_SHIFT + lowOrderZeros; final int bigIntNBits = SINGLE_EXP_SHIFT + 1 - lowOrderZeros; // // Scale bigD, bigB appropriately for // big-integer operations. // Naively, we multiply by powers of ten // and powers of two. What we actually do // is keep track of the powers of 5 and // powers of 2 we would use, then factor out // common divisors before doing the work. // int B2 = B5; // powers of 2 in bigB int D2 = D5; // powers of 2 in bigD int Ulp2; // powers of 2 in halfUlp. if (bigIntExp >= 0) { B2 += bigIntExp; } else { D2 -= bigIntExp; } Ulp2 = B2; // shift bigB and bigD left by a number s. t. // halfUlp is still an integer. int hulpbias; if (binexp <= -FloatConsts.EXP_BIAS) { // This is going to be a denormalized number // (if not actually zero). // half an ULP is at 2^-(FloatConsts.EXP_BIAS+SINGLE_EXP_SHIFT+1) hulpbias = binexp + lowOrderZeros + FloatConsts.EXP_BIAS; } else { hulpbias = 1 + lowOrderZeros; } B2 += hulpbias; D2 += hulpbias; // if there are common factors of 2, we might just as well // factor them out, as they add nothing useful. int common2 = Math.min(B2, Math.min(D2, Ulp2)); B2 -= common2; D2 -= common2; Ulp2 -= common2; // do multiplications by powers of 5 and 2 FDBigInteger bigB = FDBigInteger.valueOfMulPow52(bigBbits, B5, B2); if (bigD == null || prevD2 != D2) { bigD = bigD0.leftShift(D2); prevD2 = D2; } // // to recap: // bigB is the scaled-big-int version of our floating-point // candidate. // bigD is the scaled-big-int version of the exact value // as we understand it. // halfUlp is 1/2 an ulp of bigB, except for special cases // of exact powers of 2 // // the plan is to compare bigB with bigD, and if the difference // is less than halfUlp, then we're satisfied. Otherwise, // use the ratio of difference to halfUlp to calculate a fudge // factor to add to the floating value, then go 'round again. // FDBigInteger diff; int cmpResult; boolean overvalue; if ((cmpResult = bigB.cmp(bigD)) > 0) { overvalue = true; // our candidate is too big. diff = bigB.leftInplaceSub(bigD); // bigB is not user further - reuse if ((bigIntNBits == 1) && (bigIntExp > -FloatConsts.EXP_BIAS + 1)) { // candidate is a normalized exact power of 2 and // is too big (larger than Float.MIN_NORMAL). We will be subtracting. // For our purposes, ulp is the ulp of the // next smaller range. Ulp2 -= 1; if (Ulp2 < 0) { // rats. Cannot de-scale ulp this far. // must scale diff in other direction. Ulp2 = 0; diff = diff.leftShift(1); } } } else if (cmpResult < 0) { overvalue = false; // our candidate is too small. diff = bigD.rightInplaceSub(bigB); // bigB is not user further - reuse } else { // the candidate is exactly right! // this happens with surprising frequency break correctionLoop; } cmpResult = diff.cmpPow52(B5, Ulp2); if ((cmpResult) < 0) { // difference is small. // this is close enough break correctionLoop; } else if (cmpResult == 0) { // difference is exactly half an ULP // round to some other value maybe, then finish if ((ieeeBits & 1) != 0) { // half ties to even ieeeBits += overvalue ? -1 : 1; // nextDown or nextUp } break correctionLoop; } else { // difference is non-trivial. // could scale addend by ratio of difference to // halfUlp here, if we bothered to compute that difference. // Most of the time ( I hope ) it is about 1 anyway. ieeeBits += overvalue ? -1 : 1; // nextDown or nextUp if (ieeeBits == 0 || ieeeBits == FloatConsts.EXP_BIT_MASK) { // 0.0 or Float.POSITIVE_INFINITY break correctionLoop; // oops. Fell off end of range. } continue; // try again. } } if (isNegative) { ieeeBits |= FloatConsts.SIGN_BIT_MASK; } return Float.intBitsToFloat(ieeeBits); }
All the positive powers of 10 that can be represented exactly in double/float.
/** * All the positive powers of 10 that can be * represented exactly in double/float. */
private static final double[] SMALL_10_POW = { 1.0e0, 1.0e1, 1.0e2, 1.0e3, 1.0e4, 1.0e5, 1.0e6, 1.0e7, 1.0e8, 1.0e9, 1.0e10, 1.0e11, 1.0e12, 1.0e13, 1.0e14, 1.0e15, 1.0e16, 1.0e17, 1.0e18, 1.0e19, 1.0e20, 1.0e21, 1.0e22 }; private static final float[] SINGLE_SMALL_10_POW = { 1.0e0f, 1.0e1f, 1.0e2f, 1.0e3f, 1.0e4f, 1.0e5f, 1.0e6f, 1.0e7f, 1.0e8f, 1.0e9f, 1.0e10f }; private static final double[] BIG_10_POW = { 1e16, 1e32, 1e64, 1e128, 1e256 }; private static final double[] TINY_10_POW = { 1e-16, 1e-32, 1e-64, 1e-128, 1e-256 }; private static final int MAX_SMALL_TEN = SMALL_10_POW.length-1; private static final int SINGLE_MAX_SMALL_TEN = SINGLE_SMALL_10_POW.length-1; }
Returns a BinaryToASCIIConverter for a double. The returned object is a ThreadLocal variable of this class.
Params:
  • d – The double precision value to convert.
Returns:The converter.
/** * Returns a <code>BinaryToASCIIConverter</code> for a <code>double</code>. * The returned object is a <code>ThreadLocal</code> variable of this class. * * @param d The double precision value to convert. * @return The converter. */
public static BinaryToASCIIConverter getBinaryToASCIIConverter(double d) { return getBinaryToASCIIConverter(d, true); }
Returns a BinaryToASCIIConverter for a double. The returned object is a ThreadLocal variable of this class.
Params:
  • d – The double precision value to convert.
  • isCompatibleFormat –
Returns:The converter.
/** * Returns a <code>BinaryToASCIIConverter</code> for a <code>double</code>. * The returned object is a <code>ThreadLocal</code> variable of this class. * * @param d The double precision value to convert. * @param isCompatibleFormat * @return The converter. */
static BinaryToASCIIConverter getBinaryToASCIIConverter(double d, boolean isCompatibleFormat) { long dBits = Double.doubleToRawLongBits(d); boolean isNegative = (dBits&DoubleConsts.SIGN_BIT_MASK) != 0; // discover sign long fractBits = dBits & DoubleConsts.SIGNIF_BIT_MASK; int binExp = (int)( (dBits&DoubleConsts.EXP_BIT_MASK) >> EXP_SHIFT ); // Discover obvious special cases of NaN and Infinity. if ( binExp == (int)(DoubleConsts.EXP_BIT_MASK>>EXP_SHIFT) ) { if ( fractBits == 0L ){ return isNegative ? B2AC_NEGATIVE_INFINITY : B2AC_POSITIVE_INFINITY; } else { return B2AC_NOT_A_NUMBER; } } // Finish unpacking // Normalize denormalized numbers. // Insert assumed high-order bit for normalized numbers. // Subtract exponent bias. int nSignificantBits; if ( binExp == 0 ){ if ( fractBits == 0L ){ // not a denorm, just a 0! return isNegative ? B2AC_NEGATIVE_ZERO : B2AC_POSITIVE_ZERO; } int leadingZeros = Long.numberOfLeadingZeros(fractBits); int shift = leadingZeros-(63-EXP_SHIFT); fractBits <<= shift; binExp = 1 - shift; nSignificantBits = 64-leadingZeros; // recall binExp is - shift count. } else { fractBits |= FRACT_HOB; nSignificantBits = EXP_SHIFT+1; } binExp -= DoubleConsts.EXP_BIAS; BinaryToASCIIBuffer buf = getBinaryToASCIIBuffer(); buf.setSign(isNegative); // call the routine that actually does all the hard work. buf.dtoa(binExp, fractBits, nSignificantBits, isCompatibleFormat); return buf; } private static BinaryToASCIIConverter getBinaryToASCIIConverter(float f) { int fBits = Float.floatToRawIntBits( f ); boolean isNegative = (fBits&FloatConsts.SIGN_BIT_MASK) != 0; int fractBits = fBits&FloatConsts.SIGNIF_BIT_MASK; int binExp = (fBits&FloatConsts.EXP_BIT_MASK) >> SINGLE_EXP_SHIFT; // Discover obvious special cases of NaN and Infinity. if ( binExp == (FloatConsts.EXP_BIT_MASK>>SINGLE_EXP_SHIFT) ) { if ( fractBits == 0L ){ return isNegative ? B2AC_NEGATIVE_INFINITY : B2AC_POSITIVE_INFINITY; } else { return B2AC_NOT_A_NUMBER; } } // Finish unpacking // Normalize denormalized numbers. // Insert assumed high-order bit for normalized numbers. // Subtract exponent bias. int nSignificantBits; if ( binExp == 0 ){ if ( fractBits == 0 ){ // not a denorm, just a 0! return isNegative ? B2AC_NEGATIVE_ZERO : B2AC_POSITIVE_ZERO; } int leadingZeros = Integer.numberOfLeadingZeros(fractBits); int shift = leadingZeros-(31-SINGLE_EXP_SHIFT); fractBits <<= shift; binExp = 1 - shift; nSignificantBits = 32 - leadingZeros; // recall binExp is - shift count. } else { fractBits |= SINGLE_FRACT_HOB; nSignificantBits = SINGLE_EXP_SHIFT+1; } binExp -= FloatConsts.EXP_BIAS; BinaryToASCIIBuffer buf = getBinaryToASCIIBuffer(); buf.setSign(isNegative); // call the routine that actually does all the hard work. buf.dtoa(binExp, ((long)fractBits)<<(EXP_SHIFT-SINGLE_EXP_SHIFT), nSignificantBits, true); return buf; } @SuppressWarnings("fallthrough") static ASCIIToBinaryConverter readJavaFormatString( String in ) throws NumberFormatException { boolean isNegative = false; boolean signSeen = false; int decExp; char c; parseNumber: try{ in = in.trim(); // don't fool around with white space. // throws NullPointerException if null int len = in.length(); if ( len == 0 ) { throw new NumberFormatException("empty String"); } int i = 0; switch (in.charAt(i)){ case '-': isNegative = true; //FALLTHROUGH case '+': i++; signSeen = true; } c = in.charAt(i); if(c == 'N') { // Check for NaN if((len-i)==NAN_LENGTH && in.indexOf(NAN_REP,i)==i) { return A2BC_NOT_A_NUMBER; } // something went wrong, throw exception break parseNumber; } else if(c == 'I') { // Check for Infinity strings if((len-i)==INFINITY_LENGTH && in.indexOf(INFINITY_REP,i)==i) { return isNegative? A2BC_NEGATIVE_INFINITY : A2BC_POSITIVE_INFINITY; } // something went wrong, throw exception break parseNumber; } else if (c == '0') { // check for hexadecimal floating-point number if (len > i+1 ) { char ch = in.charAt(i+1); if (ch == 'x' || ch == 'X' ) { // possible hex string return parseHexString(in); } } } // look for and process decimal floating-point string char[] digits = new char[ len ]; int nDigits= 0; boolean decSeen = false; int decPt = 0; int nLeadZero = 0; int nTrailZero= 0; skipLeadingZerosLoop: while (i < len) { c = in.charAt(i); if (c == '0') { nLeadZero++; } else if (c == '.') { if (decSeen) { // already saw one ., this is the 2nd. throw new NumberFormatException("multiple points"); } decPt = i; if (signSeen) { decPt -= 1; } decSeen = true; } else { break skipLeadingZerosLoop; } i++; } digitLoop: while (i < len) { c = in.charAt(i); if (c >= '1' && c <= '9') { digits[nDigits++] = c; nTrailZero = 0; } else if (c == '0') { digits[nDigits++] = c; nTrailZero++; } else if (c == '.') { if (decSeen) { // already saw one ., this is the 2nd. throw new NumberFormatException("multiple points"); } decPt = i; if (signSeen) { decPt -= 1; } decSeen = true; } else { break digitLoop; } i++; } nDigits -=nTrailZero; // // At this point, we've scanned all the digits and decimal // point we're going to see. Trim off leading and trailing // zeros, which will just confuse us later, and adjust // our initial decimal exponent accordingly. // To review: // we have seen i total characters. // nLeadZero of them were zeros before any other digits. // nTrailZero of them were zeros after any other digits. // if ( decSeen ), then a . was seen after decPt characters // ( including leading zeros which have been discarded ) // nDigits characters were neither lead nor trailing // zeros, nor point // // // special hack: if we saw no non-zero digits, then the // answer is zero! // Unfortunately, we feel honor-bound to keep parsing! // boolean isZero = (nDigits == 0); if ( isZero && nLeadZero == 0 ){ // we saw NO DIGITS AT ALL, // not even a crummy 0! // this is not allowed. break parseNumber; // go throw exception } // // Our initial exponent is decPt, adjusted by the number of // discarded zeros. Or, if there was no decPt, // then its just nDigits adjusted by discarded trailing zeros. // if ( decSeen ){ decExp = decPt - nLeadZero; } else { decExp = nDigits + nTrailZero; } // // Look for 'e' or 'E' and an optionally signed integer. // if ( (i < len) && (((c = in.charAt(i) )=='e') || (c == 'E') ) ){ int expSign = 1; int expVal = 0; int reallyBig = Integer.MAX_VALUE / 10; boolean expOverflow = false; switch( in.charAt(++i) ){ case '-': expSign = -1; //FALLTHROUGH case '+': i++; } int expAt = i; expLoop: while ( i < len ){ if ( expVal >= reallyBig ){ // the next character will cause integer // overflow. expOverflow = true; } c = in.charAt(i++); if(c>='0' && c<='9') { expVal = expVal*10 + ( (int)c - (int)'0' ); } else { i--; // back up. break expLoop; // stop parsing exponent. } } int expLimit = BIG_DECIMAL_EXPONENT + nDigits + nTrailZero; if (expOverflow || (expVal > expLimit)) { // There is still a chance that the exponent will be safe to // use: if it would eventually decrease due to a negative // decExp, and that number is below the limit. We check for // that here. if (!expOverflow && (expSign == 1 && decExp < 0) && (expVal + decExp) < expLimit) { // Cannot overflow: adding a positive and negative number. decExp += expVal; } else { // // The intent here is to end up with // infinity or zero, as appropriate. // The reason for yielding such a small decExponent, // rather than something intuitive such as // expSign*Integer.MAX_VALUE, is that this value // is subject to further manipulation in // doubleValue() and floatValue(), and I don't want // it to be able to cause overflow there! // (The only way we can get into trouble here is for // really outrageous nDigits+nTrailZero, such as 2 // billion.) // decExp = expSign * expLimit; } } else { // this should not overflow, since we tested // for expVal > (MAX+N), where N >= abs(decExp) decExp = decExp + expSign*expVal; } // if we saw something not a digit ( or end of string ) // after the [Ee][+-], without seeing any digits at all // this is certainly an error. If we saw some digits, // but then some trailing garbage, that might be ok. // so we just fall through in that case. // HUMBUG if ( i == expAt ) { break parseNumber; // certainly bad } } // // We parsed everything we could. // If there are leftovers, then this is not good input! // if ( i < len && ((i != len - 1) || (in.charAt(i) != 'f' && in.charAt(i) != 'F' && in.charAt(i) != 'd' && in.charAt(i) != 'D'))) { break parseNumber; // go throw exception } if(isZero) { return isNegative ? A2BC_NEGATIVE_ZERO : A2BC_POSITIVE_ZERO; } return new ASCIIToBinaryBuffer(isNegative, decExp, digits, nDigits); } catch ( StringIndexOutOfBoundsException e ){ } throw new NumberFormatException("For input string: \"" + in + "\""); } private static class HexFloatPattern {
Grammar is compatible with hexadecimal floating-point constants described in section 6.4.4.2 of the C99 specification.
/** * Grammar is compatible with hexadecimal floating-point constants * described in section 6.4.4.2 of the C99 specification. */
private static final Pattern VALUE = Pattern.compile( //1 234 56 7 8 9 "([-+])?0[xX](((\\p{XDigit}+)\\.?)|((\\p{XDigit}*)\\.(\\p{XDigit}+)))[pP]([-+])?(\\p{Digit}+)[fFdD]?" ); }
Converts string s to a suitable floating decimal; uses the double constructor and sets the roundDir variable appropriately in case the value is later converted to a float.
Params:
  • s – The String to parse.
/** * Converts string s to a suitable floating decimal; uses the * double constructor and sets the roundDir variable appropriately * in case the value is later converted to a float. * * @param s The <code>String</code> to parse. */
static ASCIIToBinaryConverter parseHexString(String s) { // Verify string is a member of the hexadecimal floating-point // string language. Matcher m = HexFloatPattern.VALUE.matcher(s); boolean validInput = m.matches(); if (!validInput) { // Input does not match pattern throw new NumberFormatException("For input string: \"" + s + "\""); } else { // validInput // // We must isolate the sign, significand, and exponent // fields. The sign value is straightforward. Since // floating-point numbers are stored with a normalized // representation, the significand and exponent are // interrelated. // // After extracting the sign, we normalized the // significand as a hexadecimal value, calculating an // exponent adjust for any shifts made during // normalization. If the significand is zero, the // exponent doesn't need to be examined since the output // will be zero. // // Next the exponent in the input string is extracted. // Afterwards, the significand is normalized as a *binary* // value and the input value's normalized exponent can be // computed. The significand bits are copied into a // double significand; if the string has more logical bits // than can fit in a double, the extra bits affect the // round and sticky bits which are used to round the final // value. // // Extract significand sign String group1 = m.group(1); boolean isNegative = ((group1 != null) && group1.equals("-")); // Extract Significand magnitude // // Based on the form of the significand, calculate how the // binary exponent needs to be adjusted to create a // normalized//hexadecimal* floating-point number; that // is, a number where there is one nonzero hex digit to // the left of the (hexa)decimal point. Since we are // adjusting a binary, not hexadecimal exponent, the // exponent is adjusted by a multiple of 4. // // There are a number of significand scenarios to consider; // letters are used in indicate nonzero digits: // // 1. 000xxxx => x.xxx normalized // increase exponent by (number of x's - 1)*4 // // 2. 000xxx.yyyy => x.xxyyyy normalized // increase exponent by (number of x's - 1)*4 // // 3. .000yyy => y.yy normalized // decrease exponent by (number of zeros + 1)*4 // // 4. 000.00000yyy => y.yy normalized // decrease exponent by (number of zeros to right of point + 1)*4 // // If the significand is exactly zero, return a properly // signed zero. // String significandString = null; int signifLength = 0; int exponentAdjust = 0; { int leftDigits = 0; // number of meaningful digits to // left of "decimal" point // (leading zeros stripped) int rightDigits = 0; // number of digits to right of // "decimal" point; leading zeros // must always be accounted for // // The significand is made up of either // // 1. group 4 entirely (integer portion only) // // OR // // 2. the fractional portion from group 7 plus any // (optional) integer portions from group 6. // String group4; if ((group4 = m.group(4)) != null) { // Integer-only significand // Leading zeros never matter on the integer portion significandString = stripLeadingZeros(group4); leftDigits = significandString.length(); } else { // Group 6 is the optional integer; leading zeros // never matter on the integer portion String group6 = stripLeadingZeros(m.group(6)); leftDigits = group6.length(); // fraction String group7 = m.group(7); rightDigits = group7.length(); // Turn "integer.fraction" into "integer"+"fraction" significandString = ((group6 == null) ? "" : group6) + // is the null // check necessary? group7; } significandString = stripLeadingZeros(significandString); signifLength = significandString.length(); // // Adjust exponent as described above // if (leftDigits >= 1) { // Cases 1 and 2 exponentAdjust = 4 * (leftDigits - 1); } else { // Cases 3 and 4 exponentAdjust = -4 * (rightDigits - signifLength + 1); } // If the significand is zero, the exponent doesn't // matter; return a properly signed zero. if (signifLength == 0) { // Only zeros in input return isNegative ? A2BC_NEGATIVE_ZERO : A2BC_POSITIVE_ZERO; } } // Extract Exponent // // Use an int to read in the exponent value; this should // provide more than sufficient range for non-contrived // inputs. If reading the exponent in as an int does // overflow, examine the sign of the exponent and // significand to determine what to do. // String group8 = m.group(8); boolean positiveExponent = (group8 == null) || group8.equals("+"); long unsignedRawExponent; try { unsignedRawExponent = Integer.parseInt(m.group(9)); } catch (NumberFormatException e) { // At this point, we know the exponent is // syntactically well-formed as a sequence of // digits. Therefore, if an NumberFormatException // is thrown, it must be due to overflowing int's // range. Also, at this point, we have already // checked for a zero significand. Thus the signs // of the exponent and significand determine the // final result: // // significand // + - // exponent + +infinity -infinity // - +0.0 -0.0 return isNegative ? (positiveExponent ? A2BC_NEGATIVE_INFINITY : A2BC_NEGATIVE_ZERO) : (positiveExponent ? A2BC_POSITIVE_INFINITY : A2BC_POSITIVE_ZERO); } long rawExponent = (positiveExponent ? 1L : -1L) * // exponent sign unsignedRawExponent; // exponent magnitude // Calculate partially adjusted exponent long exponent = rawExponent + exponentAdjust; // Starting copying non-zero bits into proper position in // a long; copy explicit bit too; this will be masked // later for normal values. boolean round = false; boolean sticky = false; int nextShift = 0; long significand = 0L; // First iteration is different, since we only copy // from the leading significand bit; one more exponent // adjust will be needed... // IMPORTANT: make leadingDigit a long to avoid // surprising shift semantics! long leadingDigit = getHexDigit(significandString, 0); // // Left shift the leading digit (53 - (bit position of // leading 1 in digit)); this sets the top bit of the // significand to 1. The nextShift value is adjusted // to take into account the number of bit positions of // the leadingDigit actually used. Finally, the // exponent is adjusted to normalize the significand // as a binary value, not just a hex value. // if (leadingDigit == 1) { significand |= leadingDigit << 52; nextShift = 52 - 4; // exponent += 0 } else if (leadingDigit <= 3) { // [2, 3] significand |= leadingDigit << 51; nextShift = 52 - 5; exponent += 1; } else if (leadingDigit <= 7) { // [4, 7] significand |= leadingDigit << 50; nextShift = 52 - 6; exponent += 2; } else if (leadingDigit <= 15) { // [8, f] significand |= leadingDigit << 49; nextShift = 52 - 7; exponent += 3; } else { throw new AssertionError("Result from digit conversion too large!"); } // The preceding if-else could be replaced by a single // code block based on the high-order bit set in // leadingDigit. Given leadingOnePosition, // significand |= leadingDigit << (SIGNIFICAND_WIDTH - leadingOnePosition); // nextShift = 52 - (3 + leadingOnePosition); // exponent += (leadingOnePosition-1); // // Now the exponent variable is equal to the normalized // binary exponent. Code below will make representation // adjustments if the exponent is incremented after // rounding (includes overflows to infinity) or if the // result is subnormal. // // Copy digit into significand until the significand can't // hold another full hex digit or there are no more input // hex digits. int i = 0; for (i = 1; i < signifLength && nextShift >= 0; i++) { long currentDigit = getHexDigit(significandString, i); significand |= (currentDigit << nextShift); nextShift -= 4; } // After the above loop, the bulk of the string is copied. // Now, we must copy any partial hex digits into the // significand AND compute the round bit and start computing // sticky bit. if (i < signifLength) { // at least one hex input digit exists long currentDigit = getHexDigit(significandString, i); // from nextShift, figure out how many bits need // to be copied, if any switch (nextShift) { // must be negative case -1: // three bits need to be copied in; can // set round bit significand |= ((currentDigit & 0xEL) >> 1); round = (currentDigit & 0x1L) != 0L; break; case -2: // two bits need to be copied in; can // set round and start sticky significand |= ((currentDigit & 0xCL) >> 2); round = (currentDigit & 0x2L) != 0L; sticky = (currentDigit & 0x1L) != 0; break; case -3: // one bit needs to be copied in significand |= ((currentDigit & 0x8L) >> 3); // Now set round and start sticky, if possible round = (currentDigit & 0x4L) != 0L; sticky = (currentDigit & 0x3L) != 0; break; case -4: // all bits copied into significand; set // round and start sticky round = ((currentDigit & 0x8L) != 0); // is top bit set? // nonzeros in three low order bits? sticky = (currentDigit & 0x7L) != 0; break; default: throw new AssertionError("Unexpected shift distance remainder."); // break; } // Round is set; sticky might be set. // For the sticky bit, it suffices to check the // current digit and test for any nonzero digits in // the remaining unprocessed input. i++; while (i < signifLength && !sticky) { currentDigit = getHexDigit(significandString, i); sticky = sticky || (currentDigit != 0); i++; } } // else all of string was seen, round and sticky are // correct as false. // Float calculations int floatBits = isNegative ? FloatConsts.SIGN_BIT_MASK : 0; if (exponent >= Float.MIN_EXPONENT) { if (exponent > Float.MAX_EXPONENT) { // Float.POSITIVE_INFINITY floatBits |= FloatConsts.EXP_BIT_MASK; } else { int threshShift = DoubleConsts.SIGNIFICAND_WIDTH - FloatConsts.SIGNIFICAND_WIDTH - 1; boolean floatSticky = (significand & ((1L << threshShift) - 1)) != 0 || round || sticky; int iValue = (int) (significand >>> threshShift); if ((iValue & 3) != 1 || floatSticky) { iValue++; } floatBits |= (((((int) exponent) + (FloatConsts.EXP_BIAS - 1))) << SINGLE_EXP_SHIFT) + (iValue >> 1); } } else { if (exponent < FloatConsts.MIN_SUB_EXPONENT - 1) { // 0 } else { // exponent == -127 ==> threshShift = 53 - 2 + (-149) - (-127) = 53 - 24 int threshShift = (int) ((DoubleConsts.SIGNIFICAND_WIDTH - 2 + FloatConsts.MIN_SUB_EXPONENT) - exponent); assert threshShift >= DoubleConsts.SIGNIFICAND_WIDTH - FloatConsts.SIGNIFICAND_WIDTH; assert threshShift < DoubleConsts.SIGNIFICAND_WIDTH; boolean floatSticky = (significand & ((1L << threshShift) - 1)) != 0 || round || sticky; int iValue = (int) (significand >>> threshShift); if ((iValue & 3) != 1 || floatSticky) { iValue++; } floatBits |= iValue >> 1; } } float fValue = Float.intBitsToFloat(floatBits); // Check for overflow and update exponent accordingly. if (exponent > Double.MAX_EXPONENT) { // Infinite result // overflow to properly signed infinity return isNegative ? A2BC_NEGATIVE_INFINITY : A2BC_POSITIVE_INFINITY; } else { // Finite return value if (exponent <= Double.MAX_EXPONENT && // (Usually) normal result exponent >= Double.MIN_EXPONENT) { // The result returned in this block cannot be a // zero or subnormal; however after the // significand is adjusted from rounding, we could // still overflow in infinity. // AND exponent bits into significand; if the // significand is incremented and overflows from // rounding, this combination will update the // exponent correctly, even in the case of // Double.MAX_VALUE overflowing to infinity. significand = ((( exponent + (long) DoubleConsts.EXP_BIAS) << (DoubleConsts.SIGNIFICAND_WIDTH - 1)) & DoubleConsts.EXP_BIT_MASK) | (DoubleConsts.SIGNIF_BIT_MASK & significand); } else { // Subnormal or zero // (exponent < Double.MIN_EXPONENT) if (exponent < (DoubleConsts.MIN_SUB_EXPONENT - 1)) { // No way to round back to nonzero value // regardless of significand if the exponent is // less than -1075. return isNegative ? A2BC_NEGATIVE_ZERO : A2BC_POSITIVE_ZERO; } else { // -1075 <= exponent <= MIN_EXPONENT -1 = -1023 // // Find bit position to round to; recompute // round and sticky bits, and shift // significand right appropriately. // sticky = sticky || round; round = false; // Number of bits of significand to preserve is // exponent - abs_min_exp +1 // check: // -1075 +1074 + 1 = 0 // -1023 +1074 + 1 = 52 int bitsDiscarded = 53 - ((int) exponent - DoubleConsts.MIN_SUB_EXPONENT + 1); assert bitsDiscarded >= 1 && bitsDiscarded <= 53; // What to do here: // First, isolate the new round bit round = (significand & (1L << (bitsDiscarded - 1))) != 0L; if (bitsDiscarded > 1) { // create mask to update sticky bits; low // order bitsDiscarded bits should be 1 long mask = ~((~0L) << (bitsDiscarded - 1)); sticky = sticky || ((significand & mask) != 0L); } // Now, discard the bits significand = significand >> bitsDiscarded; significand = ((((long) (Double.MIN_EXPONENT - 1) + // subnorm exp. (long) DoubleConsts.EXP_BIAS) << (DoubleConsts.SIGNIFICAND_WIDTH - 1)) & DoubleConsts.EXP_BIT_MASK) | (DoubleConsts.SIGNIF_BIT_MASK & significand); } } // The significand variable now contains the currently // appropriate exponent bits too. // // Determine if significand should be incremented; // making this determination depends on the least // significant bit and the round and sticky bits. // // Round to nearest even rounding table, adapted from // table 4.7 in "Computer Arithmetic" by IsraelKoren. // The digit to the left of the "decimal" point is the // least significant bit, the digits to the right of // the point are the round and sticky bits // // Number Round(x) // x0.00 x0. // x0.01 x0. // x0.10 x0. // x0.11 x1. = x0. +1 // x1.00 x1. // x1.01 x1. // x1.10 x1. + 1 // x1.11 x1. + 1 // boolean leastZero = ((significand & 1L) == 0L); if ((leastZero && round && sticky) || ((!leastZero) && round)) { significand++; } double value = isNegative ? Double.longBitsToDouble(significand | DoubleConsts.SIGN_BIT_MASK) : Double.longBitsToDouble(significand ); return new PreparedASCIIToBinaryBuffer(value, fValue); } } }
Returns s with any leading zeros removed.
/** * Returns <code>s</code> with any leading zeros removed. */
static String stripLeadingZeros(String s) { // return s.replaceFirst("^0+", ""); if(!s.isEmpty() && s.charAt(0)=='0') { for(int i=1; i<s.length(); i++) { if(s.charAt(i)!='0') { return s.substring(i); } } return ""; } return s; }
Extracts a hexadecimal digit from position position of string s.
/** * Extracts a hexadecimal digit from position <code>position</code> * of string <code>s</code>. */
static int getHexDigit(String s, int position) { int value = Character.digit(s.charAt(position), 16); if (value <= -1 || value >= 16) { throw new AssertionError("Unexpected failure of digit conversion of " + s.charAt(position)); } return value; } }