/*
 * Copyright (c) 2005, 2011, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */
/*
 *******************************************************************************
 * (C) Copyright IBM Corp. and others, 1996-2009 - All Rights Reserved         *
 *                                                                             *
 * The original version of this source code and documentation is copyrighted   *
 * and owned by IBM, These materials are provided under terms of a License     *
 * Agreement between IBM and Sun. This technology is protected by multiple     *
 * US and International patents. This notice and attribution to IBM may not    *
 * to removed.                                                                 *
 *******************************************************************************
 */

package sun.text.normalizer;

import java.text.CharacterIterator;
import java.text.Normalizer;

Unicode Normalization

Unicode normalization API

normalize transforms Unicode text into an equivalent composed or decomposed form, allowing for easier sorting and searching of text. normalize supports the standard normalization forms described in Unicode Standard Annex #15 — Unicode Normalization Forms. Characters with accents or other adornments can be encoded in several different ways in Unicode. For example, take the character A-acute. In Unicode, this can be encoded as a single character (the "composed" form):

00C1 LATIN CAPITAL LETTER A WITH ACUTE

or as two separate characters (the "decomposed" form):

0041 LATIN CAPITAL LETTER A 0301 COMBINING ACUTE ACCENT

To a user of your program, however, both of these sequences should be treated as the same "user-level" character "A with acute accent". When you are searching or comparing text, you must ensure that these two sequences are treated equivalently. In addition, you must handle characters with more than one accent. Sometimes the order of a character's combining accents is significant, while in other cases accent sequences in different orders are really equivalent. Similarly, the string "ffi" can be encoded as three separate letters:

0066 LATIN SMALL LETTER F 0066 LATIN SMALL LETTER F 0069 LATIN SMALL LETTER I

or as the single character

FB03 LATIN SMALL LIGATURE FFI

The ffi ligature is not a distinct semantic character, and strictly speaking it shouldn't be in Unicode at all, but it was included for compatibility with existing character sets that already provided it. The Unicode standard identifies such characters by giving them "compatibility" decompositions into the corresponding semantic characters. When sorting and searching, you will often want to use these mappings. normalize helps solve these problems by transforming text into the canonical composed and decomposed forms as shown in the first example above. In addition, you can have it perform compatibility decompositions so that you can treat compatibility characters the same as their equivalents. Finally, normalize rearranges accents into the proper canonical order, so that you do not have to worry about accent rearrangement on your own. Form FCD, "Fast C or D", is also designed for collation. It allows to work on strings that are not necessarily normalized with an algorithm (like in collation) that works under "canonical closure", i.e., it treats precomposed characters and their decomposed equivalents the same. It is not a normalization form because it does not provide for uniqueness of representation. Multiple strings may be canonically equivalent (their NFDs are identical) and may all conform to FCD without being identical themselves. The form is defined such that the "raw decomposition", the recursive canonical decomposition of each character, results in a string that is canonically ordered. This means that precomposed characters are allowed for as long as their decompositions do not need canonical reordering. Its advantage for a process like collation is that all NFD and most NFC texts - and many unnormalized texts - already conform to FCD and do not need to be normalized (NFD) for such a process. The FCD quick check will return YES for most strings in practice. normalize(FCD) may be implemented with NFD. For more details on FCD see the collation design document: http://source.icu-project.org/repos/icu/icuhtml/trunk/design/collation/ICU_collation_design.htm ICU collation performs either NFD or FCD normalization automatically if normalization is turned on for the collator object. Beyond collation and string search, normalized strings may be useful for string equivalence comparisons, transliteration/transcription, unique representations, etc. The W3C generally recommends to exchange texts in NFC. Note also that most legacy character encodings use only precomposed forms and often do not encode any combining marks by themselves. For conversion to such character encodings the Unicode text needs to be normalized to NFC. For more usage examples, see the Unicode Standard Annex.
@stableICU 2.8
/** * Unicode Normalization * * <h2>Unicode normalization API</h2> * * <code>normalize</code> transforms Unicode text into an equivalent composed or * decomposed form, allowing for easier sorting and searching of text. * <code>normalize</code> supports the standard normalization forms described in * <a href="http://www.unicode.org/unicode/reports/tr15/" target="unicode"> * Unicode Standard Annex #15 &mdash; Unicode Normalization Forms</a>. * * Characters with accents or other adornments can be encoded in * several different ways in Unicode. For example, take the character A-acute. * In Unicode, this can be encoded as a single character (the * "composed" form): * * <p> * 00C1 LATIN CAPITAL LETTER A WITH ACUTE * </p> * * or as two separate characters (the "decomposed" form): * * <p> * 0041 LATIN CAPITAL LETTER A * 0301 COMBINING ACUTE ACCENT * </p> * * To a user of your program, however, both of these sequences should be * treated as the same "user-level" character "A with acute accent". When you * are searching or comparing text, you must ensure that these two sequences are * treated equivalently. In addition, you must handle characters with more than * one accent. Sometimes the order of a character's combining accents is * significant, while in other cases accent sequences in different orders are * really equivalent. * * Similarly, the string "ffi" can be encoded as three separate letters: * * <p> * 0066 LATIN SMALL LETTER F * 0066 LATIN SMALL LETTER F * 0069 LATIN SMALL LETTER I * </p> * * or as the single character * * <p> * FB03 LATIN SMALL LIGATURE FFI * </p> * * The ffi ligature is not a distinct semantic character, and strictly speaking * it shouldn't be in Unicode at all, but it was included for compatibility * with existing character sets that already provided it. The Unicode standard * identifies such characters by giving them "compatibility" decompositions * into the corresponding semantic characters. When sorting and searching, you * will often want to use these mappings. * * <code>normalize</code> helps solve these problems by transforming text into * the canonical composed and decomposed forms as shown in the first example * above. In addition, you can have it perform compatibility decompositions so * that you can treat compatibility characters the same as their equivalents. * Finally, <code>normalize</code> rearranges accents into the proper canonical * order, so that you do not have to worry about accent rearrangement on your * own. * * Form FCD, "Fast C or D", is also designed for collation. * It allows to work on strings that are not necessarily normalized * with an algorithm (like in collation) that works under "canonical closure", * i.e., it treats precomposed characters and their decomposed equivalents the * same. * * It is not a normalization form because it does not provide for uniqueness of * representation. Multiple strings may be canonically equivalent (their NFDs * are identical) and may all conform to FCD without being identical themselves. * * The form is defined such that the "raw decomposition", the recursive * canonical decomposition of each character, results in a string that is * canonically ordered. This means that precomposed characters are allowed for * as long as their decompositions do not need canonical reordering. * * Its advantage for a process like collation is that all NFD and most NFC texts * - and many unnormalized texts - already conform to FCD and do not need to be * normalized (NFD) for such a process. The FCD quick check will return YES for * most strings in practice. * * normalize(FCD) may be implemented with NFD. * * For more details on FCD see the collation design document: * http://source.icu-project.org/repos/icu/icuhtml/trunk/design/collation/ICU_collation_design.htm * * ICU collation performs either NFD or FCD normalization automatically if * normalization is turned on for the collator object. Beyond collation and * string search, normalized strings may be useful for string equivalence * comparisons, transliteration/transcription, unique representations, etc. * * The W3C generally recommends to exchange texts in NFC. * Note also that most legacy character encodings use only precomposed forms and * often do not encode any combining marks by themselves. For conversion to such * character encodings the Unicode text needs to be normalized to NFC. * For more usage examples, see the Unicode Standard Annex. * @stable ICU 2.8 */
public final class NormalizerBase implements Cloneable { //------------------------------------------------------------------------- // Private data //------------------------------------------------------------------------- private char[] buffer = new char[100]; private int bufferStart = 0; private int bufferPos = 0; private int bufferLimit = 0; // The input text and our position in it private UCharacterIterator text; private Mode mode = NFC; private int options = 0; private int currentIndex; private int nextIndex;
Options bit set value to select Unicode 3.2 normalization (except NormalizationCorrections). At most one Unicode version can be selected at a time.
@stableICU 2.6
/** * Options bit set value to select Unicode 3.2 normalization * (except NormalizationCorrections). * At most one Unicode version can be selected at a time. * @stable ICU 2.6 */
public static final int UNICODE_3_2=0x20;
Constant indicating that the end of the iteration has been reached. This is guaranteed to have the same value as UCharacterIterator.DONE.
@stableICU 2.8
/** * Constant indicating that the end of the iteration has been reached. * This is guaranteed to have the same value as {@link UCharacterIterator#DONE}. * @stable ICU 2.8 */
public static final int DONE = UCharacterIterator.DONE;
Constants for normalization modes.
@stableICU 2.8
/** * Constants for normalization modes. * @stable ICU 2.8 */
public static class Mode { private int modeValue; private Mode(int value) { modeValue = value; }
This method is used for method dispatch
@stableICU 2.6
/** * This method is used for method dispatch * @stable ICU 2.6 */
protected int normalize(char[] src, int srcStart, int srcLimit, char[] dest,int destStart,int destLimit, UnicodeSet nx) { int srcLen = (srcLimit - srcStart); int destLen = (destLimit - destStart); if( srcLen > destLen ) { return srcLen; } System.arraycopy(src,srcStart,dest,destStart,srcLen); return srcLen; }
This method is used for method dispatch
@stableICU 2.6
/** * This method is used for method dispatch * @stable ICU 2.6 */
protected int normalize(char[] src, int srcStart, int srcLimit, char[] dest,int destStart,int destLimit, int options) { return normalize( src, srcStart, srcLimit, dest,destStart,destLimit, NormalizerImpl.getNX(options) ); }
This method is used for method dispatch
@stableICU 2.6
/** * This method is used for method dispatch * @stable ICU 2.6 */
protected String normalize(String src, int options) { return src; }
This method is used for method dispatch
@stableICU 2.8
/** * This method is used for method dispatch * @stable ICU 2.8 */
protected int getMinC() { return -1; }
This method is used for method dispatch
@stableICU 2.8
/** * This method is used for method dispatch * @stable ICU 2.8 */
protected int getMask() { return -1; }
This method is used for method dispatch
@stableICU 2.8
/** * This method is used for method dispatch * @stable ICU 2.8 */
protected IsPrevBoundary getPrevBoundary() { return null; }
This method is used for method dispatch
@stableICU 2.8
/** * This method is used for method dispatch * @stable ICU 2.8 */
protected IsNextBoundary getNextBoundary() { return null; }
This method is used for method dispatch
@stableICU 2.6
/** * This method is used for method dispatch * @stable ICU 2.6 */
protected QuickCheckResult quickCheck(char[] src,int start, int limit, boolean allowMaybe,UnicodeSet nx) { if(allowMaybe) { return MAYBE; } return NO; }
This method is used for method dispatch
@stableICU 2.8
/** * This method is used for method dispatch * @stable ICU 2.8 */
protected boolean isNFSkippable(int c) { return true; } }
No decomposition/composition.
@stableICU 2.8
/** * No decomposition/composition. * @stable ICU 2.8 */
public static final Mode NONE = new Mode(1);
Canonical decomposition.
@stableICU 2.8
/** * Canonical decomposition. * @stable ICU 2.8 */
public static final Mode NFD = new NFDMode(2); private static final class NFDMode extends Mode { private NFDMode(int value) { super(value); } protected int normalize(char[] src, int srcStart, int srcLimit, char[] dest,int destStart,int destLimit, UnicodeSet nx) { int[] trailCC = new int[1]; return NormalizerImpl.decompose(src, srcStart,srcLimit, dest, destStart,destLimit, false, trailCC,nx); } protected String normalize( String src, int options) { return decompose(src,false,options); } protected int getMinC() { return NormalizerImpl.MIN_WITH_LEAD_CC; } protected IsPrevBoundary getPrevBoundary() { return new IsPrevNFDSafe(); } protected IsNextBoundary getNextBoundary() { return new IsNextNFDSafe(); } protected int getMask() { return (NormalizerImpl.CC_MASK|NormalizerImpl.QC_NFD); } protected QuickCheckResult quickCheck(char[] src,int start, int limit,boolean allowMaybe, UnicodeSet nx) { return NormalizerImpl.quickCheck( src, start,limit, NormalizerImpl.getFromIndexesArr( NormalizerImpl.INDEX_MIN_NFD_NO_MAYBE ), NormalizerImpl.QC_NFD, 0, allowMaybe, nx ); } protected boolean isNFSkippable(int c) { return NormalizerImpl.isNFSkippable(c,this, (NormalizerImpl.CC_MASK|NormalizerImpl.QC_NFD) ); } }
Compatibility decomposition.
@stableICU 2.8
/** * Compatibility decomposition. * @stable ICU 2.8 */
public static final Mode NFKD = new NFKDMode(3); private static final class NFKDMode extends Mode { private NFKDMode(int value) { super(value); } protected int normalize(char[] src, int srcStart, int srcLimit, char[] dest,int destStart,int destLimit, UnicodeSet nx) { int[] trailCC = new int[1]; return NormalizerImpl.decompose(src, srcStart,srcLimit, dest, destStart,destLimit, true, trailCC, nx); } protected String normalize( String src, int options) { return decompose(src,true,options); } protected int getMinC() { return NormalizerImpl.MIN_WITH_LEAD_CC; } protected IsPrevBoundary getPrevBoundary() { return new IsPrevNFDSafe(); } protected IsNextBoundary getNextBoundary() { return new IsNextNFDSafe(); } protected int getMask() { return (NormalizerImpl.CC_MASK|NormalizerImpl.QC_NFKD); } protected QuickCheckResult quickCheck(char[] src,int start, int limit,boolean allowMaybe, UnicodeSet nx) { return NormalizerImpl.quickCheck( src,start,limit, NormalizerImpl.getFromIndexesArr( NormalizerImpl.INDEX_MIN_NFKD_NO_MAYBE ), NormalizerImpl.QC_NFKD, NormalizerImpl.OPTIONS_COMPAT, allowMaybe, nx ); } protected boolean isNFSkippable(int c) { return NormalizerImpl.isNFSkippable(c, this, (NormalizerImpl.CC_MASK|NormalizerImpl.QC_NFKD) ); } }
Canonical decomposition followed by canonical composition.
@stableICU 2.8
/** * Canonical decomposition followed by canonical composition. * @stable ICU 2.8 */
public static final Mode NFC = new NFCMode(4); private static final class NFCMode extends Mode{ private NFCMode(int value) { super(value); } protected int normalize(char[] src, int srcStart, int srcLimit, char[] dest,int destStart,int destLimit, UnicodeSet nx) { return NormalizerImpl.compose( src, srcStart, srcLimit, dest,destStart,destLimit, 0, nx); } protected String normalize( String src, int options) { return compose(src, false, options); } protected int getMinC() { return NormalizerImpl.getFromIndexesArr( NormalizerImpl.INDEX_MIN_NFC_NO_MAYBE ); } protected IsPrevBoundary getPrevBoundary() { return new IsPrevTrueStarter(); } protected IsNextBoundary getNextBoundary() { return new IsNextTrueStarter(); } protected int getMask() { return (NormalizerImpl.CC_MASK|NormalizerImpl.QC_NFC); } protected QuickCheckResult quickCheck(char[] src,int start, int limit,boolean allowMaybe, UnicodeSet nx) { return NormalizerImpl.quickCheck( src,start,limit, NormalizerImpl.getFromIndexesArr( NormalizerImpl.INDEX_MIN_NFC_NO_MAYBE ), NormalizerImpl.QC_NFC, 0, allowMaybe, nx ); } protected boolean isNFSkippable(int c) { return NormalizerImpl.isNFSkippable(c,this, ( NormalizerImpl.CC_MASK|NormalizerImpl.COMBINES_ANY| (NormalizerImpl.QC_NFC & NormalizerImpl.QC_ANY_NO) ) ); } };
Compatibility decomposition followed by canonical composition.
@stableICU 2.8
/** * Compatibility decomposition followed by canonical composition. * @stable ICU 2.8 */
public static final Mode NFKC =new NFKCMode(5); private static final class NFKCMode extends Mode{ private NFKCMode(int value) { super(value); } protected int normalize(char[] src, int srcStart, int srcLimit, char[] dest,int destStart,int destLimit, UnicodeSet nx) { return NormalizerImpl.compose(src, srcStart,srcLimit, dest, destStart,destLimit, NormalizerImpl.OPTIONS_COMPAT, nx); } protected String normalize( String src, int options) { return compose(src, true, options); } protected int getMinC() { return NormalizerImpl.getFromIndexesArr( NormalizerImpl.INDEX_MIN_NFKC_NO_MAYBE ); } protected IsPrevBoundary getPrevBoundary() { return new IsPrevTrueStarter(); } protected IsNextBoundary getNextBoundary() { return new IsNextTrueStarter(); } protected int getMask() { return (NormalizerImpl.CC_MASK|NormalizerImpl.QC_NFKC); } protected QuickCheckResult quickCheck(char[] src,int start, int limit,boolean allowMaybe, UnicodeSet nx) { return NormalizerImpl.quickCheck( src,start,limit, NormalizerImpl.getFromIndexesArr( NormalizerImpl.INDEX_MIN_NFKC_NO_MAYBE ), NormalizerImpl.QC_NFKC, NormalizerImpl.OPTIONS_COMPAT, allowMaybe, nx ); } protected boolean isNFSkippable(int c) { return NormalizerImpl.isNFSkippable(c, this, ( NormalizerImpl.CC_MASK|NormalizerImpl.COMBINES_ANY| (NormalizerImpl.QC_NFKC & NormalizerImpl.QC_ANY_NO) ) ); } };
Result values for quickCheck(). For details see Unicode Technical Report 15.
@stableICU 2.8
/** * Result values for quickCheck(). * For details see Unicode Technical Report 15. * @stable ICU 2.8 */
public static final class QuickCheckResult{ private int resultValue; private QuickCheckResult(int value) { resultValue=value; } }
Indicates that string is not in the normalized format
@stableICU 2.8
/** * Indicates that string is not in the normalized format * @stable ICU 2.8 */
public static final QuickCheckResult NO = new QuickCheckResult(0);
Indicates that string is in the normalized format
@stableICU 2.8
/** * Indicates that string is in the normalized format * @stable ICU 2.8 */
public static final QuickCheckResult YES = new QuickCheckResult(1);
Indicates it cannot be determined if string is in the normalized format without further thorough checks.
@stableICU 2.8
/** * Indicates it cannot be determined if string is in the normalized * format without further thorough checks. * @stable ICU 2.8 */
public static final QuickCheckResult MAYBE = new QuickCheckResult(2); //------------------------------------------------------------------------- // Constructors //-------------------------------------------------------------------------
Creates a new Normalizer object for iterating over the normalized form of a given string.

The options parameter specifies which optional Normalizer features are to be enabled for this object.

Params:
  • str – The string to be normalized. The normalization will start at the beginning of the string.
  • mode – The normalization mode.
  • opt – Any optional features to be enabled. Currently the only available option is UNICODE_3_2. If you want the default behavior corresponding to one of the standard Unicode Normalization Forms, use 0 for this argument.
@stableICU 2.6
/** * Creates a new <tt>Normalizer</tt> object for iterating over the * normalized form of a given string. * <p> * The <tt>options</tt> parameter specifies which optional * <tt>Normalizer</tt> features are to be enabled for this object. * <p> * @param str The string to be normalized. The normalization * will start at the beginning of the string. * * @param mode The normalization mode. * * @param opt Any optional features to be enabled. * Currently the only available option is {@link #UNICODE_3_2}. * If you want the default behavior corresponding to one of the * standard Unicode Normalization Forms, use 0 for this argument. * @stable ICU 2.6 */
public NormalizerBase(String str, Mode mode, int opt) { this.text = UCharacterIterator.getInstance(str); this.mode = mode; this.options=opt; }
Creates a new Normalizer object for iterating over the normalized form of the given text.

Params:
  • iter – The input text to be normalized. The normalization will start at the beginning of the string.
  • mode – The normalization mode.
/** * Creates a new <tt>Normalizer</tt> object for iterating over the * normalized form of the given text. * <p> * @param iter The input text to be normalized. The normalization * will start at the beginning of the string. * * @param mode The normalization mode. */
public NormalizerBase(CharacterIterator iter, Mode mode) { this(iter, mode, UNICODE_LATEST); }
Creates a new Normalizer object for iterating over the normalized form of the given text.

Params:
  • iter – The input text to be normalized. The normalization will start at the beginning of the string.
  • mode – The normalization mode.
  • opt – Any optional features to be enabled. Currently the only available option is UNICODE_3_2. If you want the default behavior corresponding to one of the standard Unicode Normalization Forms, use 0 for this argument.
@stableICU 2.6
/** * Creates a new <tt>Normalizer</tt> object for iterating over the * normalized form of the given text. * <p> * @param iter The input text to be normalized. The normalization * will start at the beginning of the string. * * @param mode The normalization mode. * * @param opt Any optional features to be enabled. * Currently the only available option is {@link #UNICODE_3_2}. * If you want the default behavior corresponding to one of the * standard Unicode Normalization Forms, use 0 for this argument. * @stable ICU 2.6 */
public NormalizerBase(CharacterIterator iter, Mode mode, int opt) { this.text = UCharacterIterator.getInstance( (CharacterIterator)iter.clone() ); this.mode = mode; this.options = opt; }
Clones this Normalizer object. All properties of this object are duplicated in the new object, including the cloning of any CharacterIterator that was passed in to the constructor or to setText. However, the text storage underlying the CharacterIterator is not duplicated unless the iterator's clone method does so.
@stableICU 2.8
/** * Clones this <tt>Normalizer</tt> object. All properties of this * object are duplicated in the new object, including the cloning of any * {@link CharacterIterator} that was passed in to the constructor * or to {@link #setText(CharacterIterator) setText}. * However, the text storage underlying * the <tt>CharacterIterator</tt> is not duplicated unless the * iterator's <tt>clone</tt> method does so. * @stable ICU 2.8 */
public Object clone() { try { NormalizerBase copy = (NormalizerBase) super.clone(); copy.text = (UCharacterIterator) text.clone(); //clone the internal buffer if (buffer != null) { copy.buffer = new char[buffer.length]; System.arraycopy(buffer,0,copy.buffer,0,buffer.length); } return copy; } catch (CloneNotSupportedException e) { throw new InternalError(e.toString(), e); } } //-------------------------------------------------------------------------- // Static Utility methods //--------------------------------------------------------------------------
Compose a string. The string will be composed to according the the specified mode.
Params:
  • str – The string to compose.
  • compat – If true the string will be composed accoding to NFKC rules and if false will be composed according to NFC rules.
  • options – The only recognized option is UNICODE_3_2
Returns:String The composed string
@stableICU 2.6
/** * Compose a string. * The string will be composed to according the the specified mode. * @param str The string to compose. * @param compat If true the string will be composed accoding to * NFKC rules and if false will be composed according to * NFC rules. * @param options The only recognized option is UNICODE_3_2 * @return String The composed string * @stable ICU 2.6 */
public static String compose(String str, boolean compat, int options) { char[] dest, src; if (options == UNICODE_3_2_0_ORIGINAL) { String mappedStr = NormalizerImpl.convert(str); dest = new char[mappedStr.length()*MAX_BUF_SIZE_COMPOSE]; src = mappedStr.toCharArray(); } else { dest = new char[str.length()*MAX_BUF_SIZE_COMPOSE]; src = str.toCharArray(); } int destSize=0; UnicodeSet nx = NormalizerImpl.getNX(options); /* reset options bits that should only be set here or inside compose() */ options&=~(NormalizerImpl.OPTIONS_SETS_MASK|NormalizerImpl.OPTIONS_COMPAT|NormalizerImpl.OPTIONS_COMPOSE_CONTIGUOUS); if(compat) { options|=NormalizerImpl.OPTIONS_COMPAT; } for(;;) { destSize=NormalizerImpl.compose(src,0,src.length, dest,0,dest.length,options, nx); if(destSize<=dest.length) { return new String(dest,0,destSize); } else { dest = new char[destSize]; } } } private static final int MAX_BUF_SIZE_COMPOSE = 2; private static final int MAX_BUF_SIZE_DECOMPOSE = 3;
Decompose a string. The string will be decomposed to according the the specified mode.
Params:
  • str – The string to decompose.
  • compat – If true the string will be decomposed accoding to NFKD rules and if false will be decomposed according to NFD rules.
Returns:String The decomposed string
@stableICU 2.8
/** * Decompose a string. * The string will be decomposed to according the the specified mode. * @param str The string to decompose. * @param compat If true the string will be decomposed accoding to NFKD * rules and if false will be decomposed according to NFD * rules. * @return String The decomposed string * @stable ICU 2.8 */
public static String decompose(String str, boolean compat) { return decompose(str,compat,UNICODE_LATEST); }
Decompose a string. The string will be decomposed to according the the specified mode.
Params:
  • str – The string to decompose.
  • compat – If true the string will be decomposed accoding to NFKD rules and if false will be decomposed according to NFD rules.
  • options – The normalization options, ORed together (0 for no options).
Returns:String The decomposed string
@stableICU 2.6
/** * Decompose a string. * The string will be decomposed to according the the specified mode. * @param str The string to decompose. * @param compat If true the string will be decomposed accoding to NFKD * rules and if false will be decomposed according to NFD * rules. * @param options The normalization options, ORed together (0 for no options). * @return String The decomposed string * @stable ICU 2.6 */
public static String decompose(String str, boolean compat, int options) { int[] trailCC = new int[1]; int destSize=0; UnicodeSet nx = NormalizerImpl.getNX(options); char[] dest; if (options == UNICODE_3_2_0_ORIGINAL) { String mappedStr = NormalizerImpl.convert(str); dest = new char[mappedStr.length()*MAX_BUF_SIZE_DECOMPOSE]; for(;;) { destSize=NormalizerImpl.decompose(mappedStr.toCharArray(),0,mappedStr.length(), dest,0,dest.length, compat,trailCC, nx); if(destSize<=dest.length) { return new String(dest,0,destSize); } else { dest = new char[destSize]; } } } else { dest = new char[str.length()*MAX_BUF_SIZE_DECOMPOSE]; for(;;) { destSize=NormalizerImpl.decompose(str.toCharArray(),0,str.length(), dest,0,dest.length, compat,trailCC, nx); if(destSize<=dest.length) { return new String(dest,0,destSize); } else { dest = new char[destSize]; } } } }
Normalize a string. The string will be normalized according the the specified normalization mode and options.
Params:
  • src – The char array to compose.
  • srcStart – Start index of the source
  • srcLimit – Limit index of the source
  • dest – The char buffer to fill in
  • destStart – Start index of the destination buffer
  • destLimit – End index of the destination buffer
  • mode – The normalization mode; one of Normalizer.NONE, Normalizer.NFD, Normalizer.NFC, Normalizer.NFKC, Normalizer.NFKD, Normalizer.DEFAULT
  • options – The normalization options, ORed together (0 for no options).
Throws:
Returns:int The total buffer size needed;if greater than length of result, the output was truncated.
@stableICU 2.6
/** * Normalize a string. * The string will be normalized according the the specified normalization * mode and options. * @param src The char array to compose. * @param srcStart Start index of the source * @param srcLimit Limit index of the source * @param dest The char buffer to fill in * @param destStart Start index of the destination buffer * @param destLimit End index of the destination buffer * @param mode The normalization mode; one of Normalizer.NONE, * Normalizer.NFD, Normalizer.NFC, Normalizer.NFKC, * Normalizer.NFKD, Normalizer.DEFAULT * @param options The normalization options, ORed together (0 for no options). * @return int The total buffer size needed;if greater than length of * result, the output was truncated. * @exception IndexOutOfBoundsException if the target capacity is * less than the required length * @stable ICU 2.6 */
public static int normalize(char[] src,int srcStart, int srcLimit, char[] dest,int destStart, int destLimit, Mode mode, int options) { int length = mode.normalize(src,srcStart,srcLimit,dest,destStart,destLimit, options); if(length<=(destLimit-destStart)) { return length; } else { throw new IndexOutOfBoundsException(Integer.toString(length)); } } //------------------------------------------------------------------------- // Iteration API //-------------------------------------------------------------------------
Return the current character in the normalized text->
Returns:The codepoint as an int
@stableICU 2.8
/** * Return the current character in the normalized text-> * @return The codepoint as an int * @stable ICU 2.8 */
public int current() { if(bufferPos<bufferLimit || nextNormalize()) { return getCodePointAt(bufferPos); } else { return DONE; } }
Return the next character in the normalized text and advance the iteration position by one. If the end of the text has already been reached, DONE is returned.
Returns:The codepoint as an int
@stableICU 2.8
/** * Return the next character in the normalized text and advance * the iteration position by one. If the end * of the text has already been reached, {@link #DONE} is returned. * @return The codepoint as an int * @stable ICU 2.8 */
public int next() { if(bufferPos<bufferLimit || nextNormalize()) { int c=getCodePointAt(bufferPos); bufferPos+=(c>0xFFFF) ? 2 : 1; return c; } else { return DONE; } }
Return the previous character in the normalized text and decrement the iteration position by one. If the beginning of the text has already been reached, DONE is returned.
Returns:The codepoint as an int
@stableICU 2.8
/** * Return the previous character in the normalized text and decrement * the iteration position by one. If the beginning * of the text has already been reached, {@link #DONE} is returned. * @return The codepoint as an int * @stable ICU 2.8 */
public int previous() { if(bufferPos>0 || previousNormalize()) { int c=getCodePointAt(bufferPos-1); bufferPos-=(c>0xFFFF) ? 2 : 1; return c; } else { return DONE; } }
Reset the index to the beginning of the text. This is equivalent to setIndexOnly(startIndex)).
@stableICU 2.8
/** * Reset the index to the beginning of the text. * This is equivalent to setIndexOnly(startIndex)). * @stable ICU 2.8 */
public void reset() { text.setIndex(0); currentIndex=nextIndex=0; clearBuffer(); }
Set the iteration position in the input text that is being normalized, without any immediate normalization. After setIndexOnly(), getIndex() will return the same index that is specified here.
Params:
  • index – the desired index in the input text.
@stableICU 2.8
/** * Set the iteration position in the input text that is being normalized, * without any immediate normalization. * After setIndexOnly(), getIndex() will return the same index that is * specified here. * * @param index the desired index in the input text. * @stable ICU 2.8 */
public void setIndexOnly(int index) { text.setIndex(index); currentIndex=nextIndex=index; // validates index clearBuffer(); }
Set the iteration position in the input text that is being normalized and return the first normalized character at that position.

Note: This method sets the position in the input text, while next and previous iterate through characters in the normalized output. This means that there is not necessarily a one-to-one correspondence between characters returned by next and previous and the indices passed to and returned from setIndex and getIndex.

Params:
  • index – the desired index in the input text->
Throws:
Returns: the first normalized character that is the result of iterating forward starting at the given index.
Returns:The codepoint as an int
Deprecated:ICU 3.2
@obsoleteICU 3.2
/** * Set the iteration position in the input text that is being normalized * and return the first normalized character at that position. * <p> * <b>Note:</b> This method sets the position in the <em>input</em> text, * while {@link #next} and {@link #previous} iterate through characters * in the normalized <em>output</em>. This means that there is not * necessarily a one-to-one correspondence between characters returned * by <tt>next</tt> and <tt>previous</tt> and the indices passed to and * returned from <tt>setIndex</tt> and {@link #getIndex}. * <p> * @param index the desired index in the input text-> * * @return the first normalized character that is the result of iterating * forward starting at the given index. * * @throws IllegalArgumentException if the given index is less than * {@link #getBeginIndex} or greater than {@link #getEndIndex}. * @return The codepoint as an int * @deprecated ICU 3.2 * @obsolete ICU 3.2 */
@Deprecated public int setIndex(int index) { setIndexOnly(index); return current(); }
Retrieve the index of the start of the input text. This is the begin index of the CharacterIterator or the start (i.e. 0) of the String over which this Normalizer is iterating
See Also:
  • startIndex
Deprecated:ICU 2.2. Use startIndex() instead.
Returns:The codepoint as an int
/** * Retrieve the index of the start of the input text. This is the begin * index of the <tt>CharacterIterator</tt> or the start (i.e. 0) of the * <tt>String</tt> over which this <tt>Normalizer</tt> is iterating * @deprecated ICU 2.2. Use startIndex() instead. * @return The codepoint as an int * @see #startIndex */
@Deprecated public int getBeginIndex() { return 0; }
Retrieve the index of the end of the input text. This is the end index of the CharacterIterator or the length of the String over which this Normalizer is iterating
See Also:
Deprecated:ICU 2.2. Use endIndex() instead.
Returns:The codepoint as an int
/** * Retrieve the index of the end of the input text. This is the end index * of the <tt>CharacterIterator</tt> or the length of the <tt>String</tt> * over which this <tt>Normalizer</tt> is iterating * @deprecated ICU 2.2. Use endIndex() instead. * @return The codepoint as an int * @see #endIndex */
@Deprecated public int getEndIndex() { return endIndex(); }
Retrieve the current iteration position in the input text that is being normalized. This method is useful in applications such as searching, where you need to be able to determine the position in the input text that corresponds to a given normalized output character.

Note: This method sets the position in the input, while next and previous iterate through characters in the output. This means that there is not necessarily a one-to-one correspondence between characters returned by next and previous and the indices passed to and returned from setIndex and getIndex.

Returns:The current iteration position
@stableICU 2.8
/** * Retrieve the current iteration position in the input text that is * being normalized. This method is useful in applications such as * searching, where you need to be able to determine the position in * the input text that corresponds to a given normalized output character. * <p> * <b>Note:</b> This method sets the position in the <em>input</em>, while * {@link #next} and {@link #previous} iterate through characters in the * <em>output</em>. This means that there is not necessarily a one-to-one * correspondence between characters returned by <tt>next</tt> and * <tt>previous</tt> and the indices passed to and returned from * <tt>setIndex</tt> and {@link #getIndex}. * @return The current iteration position * @stable ICU 2.8 */
public int getIndex() { if(bufferPos<bufferLimit) { return currentIndex; } else { return nextIndex; } }
Retrieve the index of the end of the input text-> This is the end index of the CharacterIterator or the length of the String over which this Normalizer is iterating
Returns:The current iteration position
@stableICU 2.8
/** * Retrieve the index of the end of the input text-> This is the end index * of the <tt>CharacterIterator</tt> or the length of the <tt>String</tt> * over which this <tt>Normalizer</tt> is iterating * @return The current iteration position * @stable ICU 2.8 */
public int endIndex() { return text.getLength(); } //------------------------------------------------------------------------- // Property access methods //-------------------------------------------------------------------------
Set the normalization mode for this object.

Note:If the normalization mode is changed while iterating over a string, calls to next and previous may return previously buffers characters in the old normalization mode until the iteration is able to re-sync at the next base character. It is safest to call setText(), first, last, etc. after calling setMode.

Params:
  • newMode – the new mode for this Normalizer. The supported modes are:
    • COMPOSE - Unicode canonical decompositiion followed by canonical composition.
    • COMPOSE_COMPAT - Unicode compatibility decompositiion follwed by canonical composition.
    • DECOMP - Unicode canonical decomposition
    • DECOMP_COMPAT - Unicode compatibility decomposition.
    • NO_OP - Do nothing but return characters from the underlying input text.
See Also:
@stableICU 2.8
/** * Set the normalization mode for this object. * <p> * <b>Note:</b>If the normalization mode is changed while iterating * over a string, calls to {@link #next} and {@link #previous} may * return previously buffers characters in the old normalization mode * until the iteration is able to re-sync at the next base character. * It is safest to call {@link #setText setText()}, {@link #first}, * {@link #last}, etc. after calling <tt>setMode</tt>. * <p> * @param newMode the new mode for this <tt>Normalizer</tt>. * The supported modes are: * <ul> * <li>{@link #COMPOSE} - Unicode canonical decompositiion * followed by canonical composition. * <li>{@link #COMPOSE_COMPAT} - Unicode compatibility decompositiion * follwed by canonical composition. * <li>{@link #DECOMP} - Unicode canonical decomposition * <li>{@link #DECOMP_COMPAT} - Unicode compatibility decomposition. * <li>{@link #NO_OP} - Do nothing but return characters * from the underlying input text. * </ul> * * @see #getMode * @stable ICU 2.8 */
public void setMode(Mode newMode) { mode = newMode; }
Return the basic operation performed by this Normalizer
See Also:
  • setMode
@stableICU 2.8
/** * Return the basic operation performed by this <tt>Normalizer</tt> * * @see #setMode * @stable ICU 2.8 */
public Mode getMode() { return mode; }
Set the input text over which this Normalizer will iterate. The iteration position is set to the beginning of the input text->
Params:
  • newText – The new string to be normalized.
@stableICU 2.8
/** * Set the input text over which this <tt>Normalizer</tt> will iterate. * The iteration position is set to the beginning of the input text-> * @param newText The new string to be normalized. * @stable ICU 2.8 */
public void setText(String newText) { UCharacterIterator newIter = UCharacterIterator.getInstance(newText); if (newIter == null) { throw new InternalError("Could not create a new UCharacterIterator"); } text = newIter; reset(); }
Set the input text over which this Normalizer will iterate. The iteration position is set to the beginning of the input text->
Params:
  • newText – The new string to be normalized.
@stableICU 2.8
/** * Set the input text over which this <tt>Normalizer</tt> will iterate. * The iteration position is set to the beginning of the input text-> * @param newText The new string to be normalized. * @stable ICU 2.8 */
public void setText(CharacterIterator newText) { UCharacterIterator newIter = UCharacterIterator.getInstance(newText); if (newIter == null) { throw new InternalError("Could not create a new UCharacterIterator"); } text = newIter; currentIndex=nextIndex=0; clearBuffer(); } //------------------------------------------------------------------------- // Private utility methods //------------------------------------------------------------------------- /* backward iteration --------------------------------------------------- */ /* * read backwards and get norm32 * return 0 if the character is <minC * if c2!=0 then (c2, c) is a surrogate pair (reversed - c2 is first * surrogate but read second!) */ private static long getPrevNorm32(UCharacterIterator src, int/*unsigned*/ minC, int/*unsigned*/ mask, char[] chars) { long norm32; int ch=0; /* need src.hasPrevious() */ if((ch=src.previous()) == UCharacterIterator.DONE) { return 0; } chars[0]=(char)ch; chars[1]=0; /* check for a surrogate before getting norm32 to see if we need to * predecrement further */ if(chars[0]<minC) { return 0; } else if(!UTF16.isSurrogate(chars[0])) { return NormalizerImpl.getNorm32(chars[0]); } else if(UTF16.isLeadSurrogate(chars[0]) || (src.getIndex()==0)) { /* unpaired surrogate */ chars[1]=(char)src.current(); return 0; } else if(UTF16.isLeadSurrogate(chars[1]=(char)src.previous())) { norm32=NormalizerImpl.getNorm32(chars[1]); if((norm32&mask)==0) { /* all surrogate pairs with this lead surrogate have irrelevant * data */ return 0; } else { /* norm32 must be a surrogate special */ return NormalizerImpl.getNorm32FromSurrogatePair(norm32,chars[0]); } } else { /* unpaired second surrogate, undo the c2=src.previous() movement */ src.moveIndex( 1); return 0; } } private interface IsPrevBoundary{ public boolean isPrevBoundary(UCharacterIterator src, int/*unsigned*/ minC, int/*unsigned*/ mask, char[] chars); } private static final class IsPrevNFDSafe implements IsPrevBoundary{ /* * for NF*D: * read backwards and check if the lead combining class is 0 * if c2!=0 then (c2, c) is a surrogate pair (reversed - c2 is first * surrogate but read second!) */ public boolean isPrevBoundary(UCharacterIterator src, int/*unsigned*/ minC, int/*unsigned*/ ccOrQCMask, char[] chars) { return NormalizerImpl.isNFDSafe(getPrevNorm32(src, minC, ccOrQCMask, chars), ccOrQCMask, ccOrQCMask& NormalizerImpl.QC_MASK); } } private static final class IsPrevTrueStarter implements IsPrevBoundary{ /* * read backwards and check if the character is (or its decomposition * begins with) a "true starter" (cc==0 and NF*C_YES) * if c2!=0 then (c2, c) is a surrogate pair (reversed - c2 is first * surrogate but read second!) */ public boolean isPrevBoundary(UCharacterIterator src, int/*unsigned*/ minC, int/*unsigned*/ ccOrQCMask, char[] chars) { long norm32; int/*unsigned*/ decompQCMask; decompQCMask=(ccOrQCMask<<2)&0xf; /*decomposition quick check mask*/ norm32=getPrevNorm32(src, minC, ccOrQCMask|decompQCMask, chars); return NormalizerImpl.isTrueStarter(norm32,ccOrQCMask,decompQCMask); } } private static int findPreviousIterationBoundary(UCharacterIterator src, IsPrevBoundary obj, int/*unsigned*/ minC, int/*mask*/ mask, char[] buffer, int[] startIndex) { char[] chars=new char[2]; boolean isBoundary; /* fill the buffer from the end backwards */ startIndex[0] = buffer.length; chars[0]=0; while(src.getIndex()>0 && chars[0]!=UCharacterIterator.DONE) { isBoundary=obj.isPrevBoundary(src, minC, mask, chars); /* always write this character to the front of the buffer */ /* make sure there is enough space in the buffer */ if(startIndex[0] < (chars[1]==0 ? 1 : 2)) { // grow the buffer char[] newBuf = new char[buffer.length*2]; /* move the current buffer contents up */ System.arraycopy(buffer,startIndex[0],newBuf, newBuf.length-(buffer.length-startIndex[0]), buffer.length-startIndex[0]); //adjust the startIndex startIndex[0]+=newBuf.length-buffer.length; buffer=newBuf; newBuf=null; } buffer[--startIndex[0]]=chars[0]; if(chars[1]!=0) { buffer[--startIndex[0]]=chars[1]; } /* stop if this just-copied character is a boundary */ if(isBoundary) { break; } } /* return the length of the buffer contents */ return buffer.length-startIndex[0]; } private static int previous(UCharacterIterator src, char[] dest, int destStart, int destLimit, Mode mode, boolean doNormalize, boolean[] pNeededToNormalize, int options) { IsPrevBoundary isPreviousBoundary; int destLength, bufferLength; int/*unsigned*/ mask; int c,c2; char minC; int destCapacity = destLimit-destStart; destLength=0; if(pNeededToNormalize!=null) { pNeededToNormalize[0]=false; } minC = (char)mode.getMinC(); mask = mode.getMask(); isPreviousBoundary = mode.getPrevBoundary(); if(isPreviousBoundary==null) { destLength=0; if((c=src.previous())>=0) { destLength=1; if(UTF16.isTrailSurrogate((char)c)) { c2= src.previous(); if(c2!= UCharacterIterator.DONE) { if(UTF16.isLeadSurrogate((char)c2)) { if(destCapacity>=2) { dest[1]=(char)c; // trail surrogate destLength=2; } // lead surrogate to be written below c=c2; } else { src.moveIndex(1); } } } if(destCapacity>0) { dest[0]=(char)c; } } return destLength; } char[] buffer = new char[100]; int[] startIndex= new int[1]; bufferLength=findPreviousIterationBoundary(src, isPreviousBoundary, minC, mask,buffer, startIndex); if(bufferLength>0) { if(doNormalize) { destLength=NormalizerBase.normalize(buffer,startIndex[0], startIndex[0]+bufferLength, dest, destStart,destLimit, mode, options); if(pNeededToNormalize!=null) { pNeededToNormalize[0]=destLength!=bufferLength || Utility.arrayRegionMatches( buffer,0,dest, destStart,destLimit ); } } else { /* just copy the source characters */ if(destCapacity>0) { System.arraycopy(buffer,startIndex[0],dest,0, (bufferLength<destCapacity) ? bufferLength : destCapacity ); } } } return destLength; } /* forward iteration ---------------------------------------------------- */ /* * read forward and check if the character is a next-iteration boundary * if c2!=0 then (c, c2) is a surrogate pair */ private interface IsNextBoundary{ boolean isNextBoundary(UCharacterIterator src, int/*unsigned*/ minC, int/*unsigned*/ mask, int[] chars); } /* * read forward and get norm32 * return 0 if the character is <minC * if c2!=0 then (c2, c) is a surrogate pair * always reads complete characters */ private static long /*unsigned*/ getNextNorm32(UCharacterIterator src, int/*unsigned*/ minC, int/*unsigned*/ mask, int[] chars) { long norm32; /* need src.hasNext() to be true */ chars[0]=src.next(); chars[1]=0; if(chars[0]<minC) { return 0; } norm32=NormalizerImpl.getNorm32((char)chars[0]); if(UTF16.isLeadSurrogate((char)chars[0])) { if(src.current()!=UCharacterIterator.DONE && UTF16.isTrailSurrogate((char)(chars[1]=src.current()))) { src.moveIndex(1); /* skip the c2 surrogate */ if((norm32&mask)==0) { /* irrelevant data */ return 0; } else { /* norm32 must be a surrogate special */ return NormalizerImpl.getNorm32FromSurrogatePair(norm32,(char)chars[1]); } } else { /* unmatched surrogate */ return 0; } } return norm32; } /* * for NF*D: * read forward and check if the lead combining class is 0 * if c2!=0 then (c, c2) is a surrogate pair */ private static final class IsNextNFDSafe implements IsNextBoundary{ public boolean isNextBoundary(UCharacterIterator src, int/*unsigned*/ minC, int/*unsigned*/ ccOrQCMask, int[] chars) { return NormalizerImpl.isNFDSafe(getNextNorm32(src,minC,ccOrQCMask,chars), ccOrQCMask, ccOrQCMask&NormalizerImpl.QC_MASK); } } /* * for NF*C: * read forward and check if the character is (or its decomposition begins * with) a "true starter" (cc==0 and NF*C_YES) * if c2!=0 then (c, c2) is a surrogate pair */ private static final class IsNextTrueStarter implements IsNextBoundary{ public boolean isNextBoundary(UCharacterIterator src, int/*unsigned*/ minC, int/*unsigned*/ ccOrQCMask, int[] chars) { long norm32; int/*unsigned*/ decompQCMask; decompQCMask=(ccOrQCMask<<2)&0xf; /*decomposition quick check mask*/ norm32=getNextNorm32(src, minC, ccOrQCMask|decompQCMask, chars); return NormalizerImpl.isTrueStarter(norm32, ccOrQCMask, decompQCMask); } } private static int findNextIterationBoundary(UCharacterIterator src, IsNextBoundary obj, int/*unsigned*/ minC, int/*unsigned*/ mask, char[] buffer) { if(src.current()==UCharacterIterator.DONE) { return 0; } /* get one character and ignore its properties */ int[] chars = new int[2]; chars[0]=src.next(); buffer[0]=(char)chars[0]; int bufferIndex = 1; if(UTF16.isLeadSurrogate((char)chars[0])&& src.current()!=UCharacterIterator.DONE) { if(UTF16.isTrailSurrogate((char)(chars[1]=src.next()))) { buffer[bufferIndex++]=(char)chars[1]; } else { src.moveIndex(-1); /* back out the non-trail-surrogate */ } } /* get all following characters until we see a boundary */ /* checking hasNext() instead of c!=DONE on the off-chance that U+ffff * is part of the string */ while( src.current()!=UCharacterIterator.DONE) { if(obj.isNextBoundary(src, minC, mask, chars)) { /* back out the latest movement to stop at the boundary */ src.moveIndex(chars[1]==0 ? -1 : -2); break; } else { if(bufferIndex+(chars[1]==0 ? 1 : 2)<=buffer.length) { buffer[bufferIndex++]=(char)chars[0]; if(chars[1]!=0) { buffer[bufferIndex++]=(char)chars[1]; } } else { char[] newBuf = new char[buffer.length*2]; System.arraycopy(buffer,0,newBuf,0,bufferIndex); buffer = newBuf; buffer[bufferIndex++]=(char)chars[0]; if(chars[1]!=0) { buffer[bufferIndex++]=(char)chars[1]; } } } } /* return the length of the buffer contents */ return bufferIndex; } private static int next(UCharacterIterator src, char[] dest, int destStart, int destLimit, NormalizerBase.Mode mode, boolean doNormalize, boolean[] pNeededToNormalize, int options) { IsNextBoundary isNextBoundary; int /*unsigned*/ mask; int /*unsigned*/ bufferLength; int c,c2; char minC; int destCapacity = destLimit - destStart; int destLength = 0; if(pNeededToNormalize!=null) { pNeededToNormalize[0]=false; } minC = (char)mode.getMinC(); mask = mode.getMask(); isNextBoundary = mode.getNextBoundary(); if(isNextBoundary==null) { destLength=0; c=src.next(); if(c!=UCharacterIterator.DONE) { destLength=1; if(UTF16.isLeadSurrogate((char)c)) { c2= src.next(); if(c2!= UCharacterIterator.DONE) { if(UTF16.isTrailSurrogate((char)c2)) { if(destCapacity>=2) { dest[1]=(char)c2; // trail surrogate destLength=2; } // lead surrogate to be written below } else { src.moveIndex(-1); } } } if(destCapacity>0) { dest[0]=(char)c; } } return destLength; } char[] buffer=new char[100]; int[] startIndex = new int[1]; bufferLength=findNextIterationBoundary(src,isNextBoundary, minC, mask, buffer); if(bufferLength>0) { if(doNormalize) { destLength=mode.normalize(buffer,startIndex[0],bufferLength, dest,destStart,destLimit, options); if(pNeededToNormalize!=null) { pNeededToNormalize[0]=destLength!=bufferLength || Utility.arrayRegionMatches(buffer,startIndex[0], dest,destStart, destLength); } } else { /* just copy the source characters */ if(destCapacity>0) { System.arraycopy(buffer,0,dest,destStart, Math.min(bufferLength,destCapacity) ); } } } return destLength; } private void clearBuffer() { bufferLimit=bufferStart=bufferPos=0; } private boolean nextNormalize() { clearBuffer(); currentIndex=nextIndex; text.setIndex(nextIndex); bufferLimit=next(text,buffer,bufferStart,buffer.length,mode,true,null,options); nextIndex=text.getIndex(); return (bufferLimit>0); } private boolean previousNormalize() { clearBuffer(); nextIndex=currentIndex; text.setIndex(currentIndex); bufferLimit=previous(text,buffer,bufferStart,buffer.length,mode,true,null,options); currentIndex=text.getIndex(); bufferPos = bufferLimit; return bufferLimit>0; } private int getCodePointAt(int index) { if( UTF16.isSurrogate(buffer[index])) { if(UTF16.isLeadSurrogate(buffer[index])) { if((index+1)<bufferLimit && UTF16.isTrailSurrogate(buffer[index+1])) { return UCharacterProperty.getRawSupplementary( buffer[index], buffer[index+1] ); } }else if(UTF16.isTrailSurrogate(buffer[index])) { if(index>0 && UTF16.isLeadSurrogate(buffer[index-1])) { return UCharacterProperty.getRawSupplementary( buffer[index-1], buffer[index] ); } } } return buffer[index]; }
Internal API
@internal
/** * Internal API * @internal */
public static boolean isNFSkippable(int c, Mode mode) { return mode.isNFSkippable(c); } // // Options // /* * Default option for Unicode 3.2.0 normalization. * Corrigendum 4 was fixed in Unicode 3.2.0 but isn't supported in * IDNA/StringPrep. * The public review issue #29 was fixed in Unicode 4.1.0. Corrigendum 5 * allowed Unicode 3.2 to 4.0.1 to apply the fix for PRI #29, but it isn't * supported by IDNA/StringPrep as well as Corrigendum 4. */ public static final int UNICODE_3_2_0_ORIGINAL = UNICODE_3_2 | NormalizerImpl.WITHOUT_CORRIGENDUM4_CORRECTIONS | NormalizerImpl.BEFORE_PRI_29; /* * Default option for the latest Unicode normalization. This option is * provided mainly for testing. * The value zero means that normalization is done with the fixes for * - Corrigendum 4 (Five CJK Canonical Mapping Errors) * - Corrigendum 5 (Normalization Idempotency) */ public static final int UNICODE_LATEST = 0x00; // // public constructor and methods for java.text.Normalizer and // sun.text.Normalizer //
Creates a new Normalizer object for iterating over the normalized form of a given string.
Params:
  • str – The string to be normalized. The normalization will start at the beginning of the string.
  • mode – The normalization mode.
/** * Creates a new <tt>Normalizer</tt> object for iterating over the * normalized form of a given string. * * @param str The string to be normalized. The normalization * will start at the beginning of the string. * * @param mode The normalization mode. */
public NormalizerBase(String str, Mode mode) { this(str, mode, UNICODE_LATEST); }
Normalizes a String using the given normalization form.
Params:
  • str – the input string to be normalized.
  • form – the normalization form
/** * Normalizes a <code>String</code> using the given normalization form. * * @param str the input string to be normalized. * @param form the normalization form */
public static String normalize(String str, Normalizer.Form form) { return normalize(str, form, UNICODE_LATEST); }
Normalizes a String using the given normalization form.
Params:
  • str – the input string to be normalized.
  • form – the normalization form
  • options – the optional features to be enabled.
/** * Normalizes a <code>String</code> using the given normalization form. * * @param str the input string to be normalized. * @param form the normalization form * @param options the optional features to be enabled. */
public static String normalize(String str, Normalizer.Form form, int options) { int len = str.length(); boolean asciiOnly = true; if (len < 80) { for (int i = 0; i < len; i++) { if (str.charAt(i) > 127) { asciiOnly = false; break; } } } else { char[] a = str.toCharArray(); for (int i = 0; i < len; i++) { if (a[i] > 127) { asciiOnly = false; break; } } } switch (form) { case NFC : return asciiOnly ? str : NFC.normalize(str, options); case NFD : return asciiOnly ? str : NFD.normalize(str, options); case NFKC : return asciiOnly ? str : NFKC.normalize(str, options); case NFKD : return asciiOnly ? str : NFKD.normalize(str, options); } throw new IllegalArgumentException("Unexpected normalization form: " + form); }
Test if a string is in a given normalization form. This is semantically equivalent to source.equals(normalize(source, mode)). Unlike quickCheck(), this function returns a definitive result, never a "maybe". For NFD, NFKD, and FCD, both functions work exactly the same. For NFC and NFKC where quickCheck may return "maybe", this function will perform further tests to arrive at a true/false result.
Params:
  • str – the input string to be checked to see if it is normalized
  • form – the normalization form
  • options – the optional features to be enabled.
/** * Test if a string is in a given normalization form. * This is semantically equivalent to source.equals(normalize(source, mode)). * * Unlike quickCheck(), this function returns a definitive result, * never a "maybe". * For NFD, NFKD, and FCD, both functions work exactly the same. * For NFC and NFKC where quickCheck may return "maybe", this function will * perform further tests to arrive at a true/false result. * @param str the input string to be checked to see if it is normalized * @param form the normalization form * @param options the optional features to be enabled. */
public static boolean isNormalized(String str, Normalizer.Form form) { return isNormalized(str, form, UNICODE_LATEST); }
Test if a string is in a given normalization form. This is semantically equivalent to source.equals(normalize(source, mode)). Unlike quickCheck(), this function returns a definitive result, never a "maybe". For NFD, NFKD, and FCD, both functions work exactly the same. For NFC and NFKC where quickCheck may return "maybe", this function will perform further tests to arrive at a true/false result.
Params:
  • str – the input string to be checked to see if it is normalized
  • form – the normalization form
  • options – the optional features to be enabled.
/** * Test if a string is in a given normalization form. * This is semantically equivalent to source.equals(normalize(source, mode)). * * Unlike quickCheck(), this function returns a definitive result, * never a "maybe". * For NFD, NFKD, and FCD, both functions work exactly the same. * For NFC and NFKC where quickCheck may return "maybe", this function will * perform further tests to arrive at a true/false result. * @param str the input string to be checked to see if it is normalized * @param form the normalization form * @param options the optional features to be enabled. */
public static boolean isNormalized(String str, Normalizer.Form form, int options) { switch (form) { case NFC: return (NFC.quickCheck(str.toCharArray(),0,str.length(),false,NormalizerImpl.getNX(options))==YES); case NFD: return (NFD.quickCheck(str.toCharArray(),0,str.length(),false,NormalizerImpl.getNX(options))==YES); case NFKC: return (NFKC.quickCheck(str.toCharArray(),0,str.length(),false,NormalizerImpl.getNX(options))==YES); case NFKD: return (NFKD.quickCheck(str.toCharArray(),0,str.length(),false,NormalizerImpl.getNX(options))==YES); } throw new IllegalArgumentException("Unexpected normalization form: " + form); } }