/*
* Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package javax.imageio;
import java.awt.Dimension;
import java.awt.image.BufferedImage;
A class describing how a stream is to be decoded. Instances of
this class or its subclasses are used to supply prescriptive
"how-to" information to instances of ImageReader
.
An image encoded as part of a file or stream may be thought of
extending out in multiple dimensions: the spatial dimensions of
width and height, a number of bands, and a number of progressive
decoding passes. This class allows a contiguous (hyper)rectangular
subarea of the image in all of these dimensions to be selected for
decoding. Additionally, the spatial dimensions may be subsampled
discontinuously. Finally, color and format conversions may be
specified by controlling the ColorModel
and
SampleModel
of the destination image, either by
providing a BufferedImage
or by using an
ImageTypeSpecifier
.
An ImageReadParam
object is used to specify how an
image, or a set of images, will be converted on input from
a stream in the context of the Java Image I/O framework. A plug-in for a
specific image format will return instances of
ImageReadParam
from the
getDefaultReadParam
method of its
ImageReader
implementation.
The state maintained by an instance of
ImageReadParam
is independent of any particular image
being decoded. When actual decoding takes place, the values set in
the read param are combined with the actual properties of the image
being decoded from the stream and the destination
BufferedImage
that will receive the decoded pixel
data. For example, the source region set using
setSourceRegion
will first be intersected with the
actual valid source area. The result will be translated by the
value returned by getDestinationOffset
, and the
resulting rectangle intersected with the actual valid destination
area to yield the destination area that will be written.
The parameters specified by an ImageReadParam
are
applied to an image as follows. First, if a rendering size has
been set by setSourceRenderSize
, the entire decoded
image is rendered at the size given by
getSourceRenderSize
. Otherwise, the image has its
natural size given by ImageReader.getWidth
and
ImageReader.getHeight
.
Next, the image is clipped against the source region
specified by getSourceXOffset
, getSourceYOffset
,
getSourceWidth
, and getSourceHeight
.
The resulting region is then subsampled according to the factors given in
IIOParam.setSourceSubsampling
. The first pixel, the number of pixels per row, and the number of rows all depend on the subsampling settings. Call the minimum X and Y coordinates of the resulting rectangle (minX
, minY
), its width w
and its height h
.
This rectangle is offset by
(getDestinationOffset().x
,
getDestinationOffset().y
) and clipped against the
destination bounds. If no destination image has been set, the
destination is defined to have a width of
getDestinationOffset().x
+ w
, and a
height of getDestinationOffset().y
+ h
so
that all pixels of the source region may be written to the
destination.
Pixels that land, after subsampling, within the destination
image, and that are written in one of the progressive passes
specified by getSourceMinProgressivePass
and
getSourceNumProgressivePasses
are passed along to the
next step.
Finally, the source samples of each pixel are mapped into
destination bands according to the algorithm described in the
comment for setDestinationBands
.
Plug-in writers may extend the functionality of
ImageReadParam
by providing a subclass that implements
additional, plug-in specific interfaces. It is up to the plug-in
to document what interfaces are available and how they are to be
used. Readers will silently ignore any extended features of an
ImageReadParam
subclass of which they are not aware.
Also, they may ignore any optional features that they normally
disable when creating their own ImageReadParam
instances via getDefaultReadParam
.
Note that unless a query method exists for a capability, it must
be supported by all ImageReader
implementations
(e.g. source render size is optional, but subsampling must be
supported).
See Also:
/**
* A class describing how a stream is to be decoded. Instances of
* this class or its subclasses are used to supply prescriptive
* "how-to" information to instances of <code>ImageReader</code>.
*
* <p> An image encoded as part of a file or stream may be thought of
* extending out in multiple dimensions: the spatial dimensions of
* width and height, a number of bands, and a number of progressive
* decoding passes. This class allows a contiguous (hyper)rectangular
* subarea of the image in all of these dimensions to be selected for
* decoding. Additionally, the spatial dimensions may be subsampled
* discontinuously. Finally, color and format conversions may be
* specified by controlling the <code>ColorModel</code> and
* <code>SampleModel</code> of the destination image, either by
* providing a <code>BufferedImage</code> or by using an
* <code>ImageTypeSpecifier</code>.
*
* <p> An <code>ImageReadParam</code> object is used to specify how an
* image, or a set of images, will be converted on input from
* a stream in the context of the Java Image I/O framework. A plug-in for a
* specific image format will return instances of
* <code>ImageReadParam</code> from the
* <code>getDefaultReadParam</code> method of its
* <code>ImageReader</code> implementation.
*
* <p> The state maintained by an instance of
* <code>ImageReadParam</code> is independent of any particular image
* being decoded. When actual decoding takes place, the values set in
* the read param are combined with the actual properties of the image
* being decoded from the stream and the destination
* <code>BufferedImage</code> that will receive the decoded pixel
* data. For example, the source region set using
* <code>setSourceRegion</code> will first be intersected with the
* actual valid source area. The result will be translated by the
* value returned by <code>getDestinationOffset</code>, and the
* resulting rectangle intersected with the actual valid destination
* area to yield the destination area that will be written.
*
* <p> The parameters specified by an <code>ImageReadParam</code> are
* applied to an image as follows. First, if a rendering size has
* been set by <code>setSourceRenderSize</code>, the entire decoded
* image is rendered at the size given by
* <code>getSourceRenderSize</code>. Otherwise, the image has its
* natural size given by <code>ImageReader.getWidth</code> and
* <code>ImageReader.getHeight</code>.
*
* <p> Next, the image is clipped against the source region
* specified by <code>getSourceXOffset</code>, <code>getSourceYOffset</code>,
* <code>getSourceWidth</code>, and <code>getSourceHeight</code>.
*
* <p> The resulting region is then subsampled according to the
* factors given in {@link IIOParam#setSourceSubsampling
* IIOParam.setSourceSubsampling}. The first pixel,
* the number of pixels per row, and the number of rows all depend
* on the subsampling settings.
* Call the minimum X and Y coordinates of the resulting rectangle
* (<code>minX</code>, <code>minY</code>), its width <code>w</code>
* and its height <code>h</code>.
*
* <p> This rectangle is offset by
* (<code>getDestinationOffset().x</code>,
* <code>getDestinationOffset().y</code>) and clipped against the
* destination bounds. If no destination image has been set, the
* destination is defined to have a width of
* <code>getDestinationOffset().x</code> + <code>w</code>, and a
* height of <code>getDestinationOffset().y</code> + <code>h</code> so
* that all pixels of the source region may be written to the
* destination.
*
* <p> Pixels that land, after subsampling, within the destination
* image, and that are written in one of the progressive passes
* specified by <code>getSourceMinProgressivePass</code> and
* <code>getSourceNumProgressivePasses</code> are passed along to the
* next step.
*
* <p> Finally, the source samples of each pixel are mapped into
* destination bands according to the algorithm described in the
* comment for <code>setDestinationBands</code>.
*
* <p> Plug-in writers may extend the functionality of
* <code>ImageReadParam</code> by providing a subclass that implements
* additional, plug-in specific interfaces. It is up to the plug-in
* to document what interfaces are available and how they are to be
* used. Readers will silently ignore any extended features of an
* <code>ImageReadParam</code> subclass of which they are not aware.
* Also, they may ignore any optional features that they normally
* disable when creating their own <code>ImageReadParam</code>
* instances via <code>getDefaultReadParam</code>.
*
* <p> Note that unless a query method exists for a capability, it must
* be supported by all <code>ImageReader</code> implementations
* (<i>e.g.</i> source render size is optional, but subsampling must be
* supported).
*
*
* @see ImageReader
* @see ImageWriter
* @see ImageWriteParam
*/
public class ImageReadParam extends IIOParam {
true
if this ImageReadParam
allows
the source rendering dimensions to be set. By default, the
value is false
. Subclasses must set this value
manually.
ImageReader
s that do not support setting of
the source render size should set this value to
false
.
/**
* <code>true</code> if this <code>ImageReadParam</code> allows
* the source rendering dimensions to be set. By default, the
* value is <code>false</code>. Subclasses must set this value
* manually.
*
* <p> <code>ImageReader</code>s that do not support setting of
* the source render size should set this value to
* <code>false</code>.
*/
protected boolean canSetSourceRenderSize = false;
The desired rendering width and height of the source, if
canSetSourceRenderSize
is true
, or
null
.
ImageReader
s that do not support setting of
the source render size may ignore this value.
/**
* The desired rendering width and height of the source, if
* <code>canSetSourceRenderSize</code> is <code>true</code>, or
* <code>null</code>.
*
* <p> <code>ImageReader</code>s that do not support setting of
* the source render size may ignore this value.
*/
protected Dimension sourceRenderSize = null;
The current destination BufferedImage
, or
null
if none has been set. By default, the value
is null
.
/**
* The current destination <code>BufferedImage</code>, or
* <code>null</code> if none has been set. By default, the value
* is <code>null</code>.
*/
protected BufferedImage destination = null;
The set of destination bands to be used, as an array of
int
s. By default, the value is null
,
indicating all destination bands should be written in order.
/**
* The set of destination bands to be used, as an array of
* <code>int</code>s. By default, the value is <code>null</code>,
* indicating all destination bands should be written in order.
*/
protected int[] destinationBands = null;
The minimum index of a progressive pass to read from the
source. By default, the value is set to 0, which indicates
that passes starting with the first available pass should be
decoded.
Subclasses should ensure that this value is
non-negative.
/**
* The minimum index of a progressive pass to read from the
* source. By default, the value is set to 0, which indicates
* that passes starting with the first available pass should be
* decoded.
*
* <p> Subclasses should ensure that this value is
* non-negative.
*/
protected int minProgressivePass = 0;
The maximum number of progressive passes to read from the
source. By default, the value is set to
Integer.MAX_VALUE
, which indicates that passes up
to and including the last available pass should be decoded.
Subclasses should ensure that this value is positive.
Additionally, if the value is not
Integer.MAX_VALUE
, then minProgressivePass +
numProgressivePasses - 1
should not exceed
Integer.MAX_VALUE
.
/**
* The maximum number of progressive passes to read from the
* source. By default, the value is set to
* <code>Integer.MAX_VALUE</code>, which indicates that passes up
* to and including the last available pass should be decoded.
*
* <p> Subclasses should ensure that this value is positive.
* Additionally, if the value is not
* <code>Integer.MAX_VALUE</code>, then <code>minProgressivePass +
* numProgressivePasses - 1</code> should not exceed
* <code>Integer.MAX_VALUE</code>.
*/
protected int numProgressivePasses = Integer.MAX_VALUE;
Constructs an ImageReadParam
.
/**
* Constructs an <code>ImageReadParam</code>.
*/
public ImageReadParam() {}
// Comment inherited
public void setDestinationType(ImageTypeSpecifier destinationType) {
super.setDestinationType(destinationType);
setDestination(null);
}
Supplies a BufferedImage
to be used as the
destination for decoded pixel data. The currently set image
will be written to by the read
,
readAll
, and readRaster
methods, and
a reference to it will be returned by those methods.
Pixel data from the aforementioned methods will be written
starting at the offset specified by
getDestinationOffset
.
If destination
is null
, a
newly-created BufferedImage
will be returned by
those methods.
At the time of reading, the image is checked to verify that
its ColorModel
and SampleModel
correspond to one of the ImageTypeSpecifier
s
returned from the ImageReader
's
getImageTypes
method. If it does not, the reader
will throw an IIOException
.
Params: - destination – the BufferedImage to be written to, or
null
.
See Also:
/**
* Supplies a <code>BufferedImage</code> to be used as the
* destination for decoded pixel data. The currently set image
* will be written to by the <code>read</code>,
* <code>readAll</code>, and <code>readRaster</code> methods, and
* a reference to it will be returned by those methods.
*
* <p> Pixel data from the aforementioned methods will be written
* starting at the offset specified by
* <code>getDestinationOffset</code>.
*
* <p> If <code>destination</code> is <code>null</code>, a
* newly-created <code>BufferedImage</code> will be returned by
* those methods.
*
* <p> At the time of reading, the image is checked to verify that
* its <code>ColorModel</code> and <code>SampleModel</code>
* correspond to one of the <code>ImageTypeSpecifier</code>s
* returned from the <code>ImageReader</code>'s
* <code>getImageTypes</code> method. If it does not, the reader
* will throw an <code>IIOException</code>.
*
* @param destination the BufferedImage to be written to, or
* <code>null</code>.
*
* @see #getDestination
*/
public void setDestination(BufferedImage destination) {
this.destination = destination;
}
Returns the BufferedImage
currently set by the
setDestination
method, or null
if none is set.
See Also: Returns: the BufferedImage to be written to.
/**
* Returns the <code>BufferedImage</code> currently set by the
* <code>setDestination</code> method, or <code>null</code>
* if none is set.
*
* @return the BufferedImage to be written to.
*
* @see #setDestination
*/
public BufferedImage getDestination() {
return destination;
}
Sets the indices of the destination bands where data
will be placed. Duplicate indices are not allowed.
A null
value indicates that all destination
bands will be used.
Choosing a destination band subset will not affect the
number of bands in the output image of a read if no destination
image is specified; the created destination image will still
have the same number of bands as if this method had never been
called. If a different number of bands in the destination
image is desired, an image must be supplied using the
ImageReadParam.setDestination
method.
At the time of reading or writing, an
IllegalArgumentException
will be thrown by the
reader or writer if a value larger than the largest destination
band index has been specified, or if the number of source bands
and destination bands to be used differ. The
ImageReader.checkReadParamBandSettings
method may
be used to automate this test.
Params: - destinationBands – an array of integer band indices to be
used.
Throws: - IllegalArgumentException – if
destinationBands
contains a negative or duplicate value.
See Also:
/**
* Sets the indices of the destination bands where data
* will be placed. Duplicate indices are not allowed.
*
* <p> A <code>null</code> value indicates that all destination
* bands will be used.
*
* <p> Choosing a destination band subset will not affect the
* number of bands in the output image of a read if no destination
* image is specified; the created destination image will still
* have the same number of bands as if this method had never been
* called. If a different number of bands in the destination
* image is desired, an image must be supplied using the
* <code>ImageReadParam.setDestination</code> method.
*
* <p> At the time of reading or writing, an
* <code>IllegalArgumentException</code> will be thrown by the
* reader or writer if a value larger than the largest destination
* band index has been specified, or if the number of source bands
* and destination bands to be used differ. The
* <code>ImageReader.checkReadParamBandSettings</code> method may
* be used to automate this test.
*
* @param destinationBands an array of integer band indices to be
* used.
*
* @exception IllegalArgumentException if <code>destinationBands</code>
* contains a negative or duplicate value.
*
* @see #getDestinationBands
* @see #getSourceBands
* @see ImageReader#checkReadParamBandSettings
*/
public void setDestinationBands(int[] destinationBands) {
if (destinationBands == null) {
this.destinationBands = null;
} else {
int numBands = destinationBands.length;
for (int i = 0; i < numBands; i++) {
int band = destinationBands[i];
if (band < 0) {
throw new IllegalArgumentException("Band value < 0!");
}
for (int j = i + 1; j < numBands; j++) {
if (band == destinationBands[j]) {
throw new IllegalArgumentException("Duplicate band value!");
}
}
}
this.destinationBands = (int[])destinationBands.clone();
}
}
Returns the set of band indices where data will be placed.
If no value has been set, null
is returned to
indicate that all destination bands will be used.
See Also: Returns: the indices of the destination bands to be used,
or null
.
/**
* Returns the set of band indices where data will be placed.
* If no value has been set, <code>null</code> is returned to
* indicate that all destination bands will be used.
*
* @return the indices of the destination bands to be used,
* or <code>null</code>.
*
* @see #setDestinationBands
*/
public int[] getDestinationBands() {
if (destinationBands == null) {
return null;
} else {
return (int[])(destinationBands.clone());
}
}
Returns true
if this reader allows the source
image to be rendered at an arbitrary size as part of the
decoding process, by means of the
setSourceRenderSize
method. If this method
returns false
, calls to
setSourceRenderSize
will throw an
UnsupportedOperationException
.
See Also: Returns: true
if setting source rendering size is
supported.
/**
* Returns <code>true</code> if this reader allows the source
* image to be rendered at an arbitrary size as part of the
* decoding process, by means of the
* <code>setSourceRenderSize</code> method. If this method
* returns <code>false</code>, calls to
* <code>setSourceRenderSize</code> will throw an
* <code>UnsupportedOperationException</code>.
*
* @return <code>true</code> if setting source rendering size is
* supported.
*
* @see #setSourceRenderSize
*/
public boolean canSetSourceRenderSize() {
return canSetSourceRenderSize;
}
If the image is able to be rendered at an arbitrary size, sets
the source width and height to the supplied values. Note that
the values returned from the getWidth
and
getHeight
methods on ImageReader
are
not affected by this method; they will continue to return the
default size for the image. Similarly, if the image is also
tiled the tile width and height are given in terms of the default
size.
Typically, the width and height should be chosen such that
the ratio of width to height closely approximates the aspect
ratio of the image, as returned from
ImageReader.getAspectRatio
.
If this plug-in does not allow the rendering size to be
set, an UnsupportedOperationException
will be
thrown.
To remove the render size setting, pass in a value of
null
for size
.
Params: - size – a
Dimension
indicating the desired
width and height.
Throws: - IllegalArgumentException – if either the width or the
height is negative or 0.
- UnsupportedOperationException – if image resizing
is not supported by this plug-in.
See Also:
/**
* If the image is able to be rendered at an arbitrary size, sets
* the source width and height to the supplied values. Note that
* the values returned from the <code>getWidth</code> and
* <code>getHeight</code> methods on <code>ImageReader</code> are
* not affected by this method; they will continue to return the
* default size for the image. Similarly, if the image is also
* tiled the tile width and height are given in terms of the default
* size.
*
* <p> Typically, the width and height should be chosen such that
* the ratio of width to height closely approximates the aspect
* ratio of the image, as returned from
* <code>ImageReader.getAspectRatio</code>.
*
* <p> If this plug-in does not allow the rendering size to be
* set, an <code>UnsupportedOperationException</code> will be
* thrown.
*
* <p> To remove the render size setting, pass in a value of
* <code>null</code> for <code>size</code>.
*
* @param size a <code>Dimension</code> indicating the desired
* width and height.
*
* @exception IllegalArgumentException if either the width or the
* height is negative or 0.
* @exception UnsupportedOperationException if image resizing
* is not supported by this plug-in.
*
* @see #getSourceRenderSize
* @see ImageReader#getWidth
* @see ImageReader#getHeight
* @see ImageReader#getAspectRatio
*/
public void setSourceRenderSize(Dimension size)
throws UnsupportedOperationException {
if (!canSetSourceRenderSize()) {
throw new UnsupportedOperationException
("Can't set source render size!");
}
if (size == null) {
this.sourceRenderSize = null;
} else {
if (size.width <= 0 || size.height <= 0) {
throw new IllegalArgumentException("width or height <= 0!");
}
this.sourceRenderSize = (Dimension)size.clone();
}
}
Returns the width and height of the source image as it
will be rendered during decoding, if they have been set via the
setSourceRenderSize
method. A
null
value indicates that no setting has been made.
See Also: Returns: the rendered width and height of the source image
as a Dimension
.
/**
* Returns the width and height of the source image as it
* will be rendered during decoding, if they have been set via the
* <code>setSourceRenderSize</code> method. A
* <code>null</code>value indicates that no setting has been made.
*
* @return the rendered width and height of the source image
* as a <code>Dimension</code>.
*
* @see #setSourceRenderSize
*/
public Dimension getSourceRenderSize() {
return (sourceRenderSize == null) ?
null : (Dimension)sourceRenderSize.clone();
}
Sets the range of progressive passes that will be decoded.
Passes outside of this range will be ignored.
A progressive pass is a re-encoding of the entire image,
generally at progressively higher effective resolutions, but
requiring greater transmission bandwidth. The most common use
of progressive encoding is found in the JPEG format, where
successive passes include more detailed representations of the
high-frequency image content.
The actual number of passes to be decoded is determined
during decoding, based on the number of actual passes available
in the stream. Thus if minPass + numPasses - 1
is
larger than the index of the last available passes, decoding
will end with that pass.
A value of numPasses
of
Integer.MAX_VALUE
indicates that all passes from
minPass
forward should be read. Otherwise, the
index of the last pass (i.e., minPass + numPasses
- 1
) must not exceed Integer.MAX_VALUE
.
There is no unsetSourceProgressivePasses
method; the same effect may be obtained by calling
setSourceProgressivePasses(0, Integer.MAX_VALUE)
.
Params: - minPass – the index of the first pass to be decoded.
- numPasses – the maximum number of passes to be decoded.
Throws: - IllegalArgumentException – if
minPass
is
negative, numPasses
is negative or 0, or
numPasses
is smaller than
Integer.MAX_VALUE
but minPass +
numPasses - 1
is greater than
INTEGER.MAX_VALUE
.
See Also:
/**
* Sets the range of progressive passes that will be decoded.
* Passes outside of this range will be ignored.
*
* <p> A progressive pass is a re-encoding of the entire image,
* generally at progressively higher effective resolutions, but
* requiring greater transmission bandwidth. The most common use
* of progressive encoding is found in the JPEG format, where
* successive passes include more detailed representations of the
* high-frequency image content.
*
* <p> The actual number of passes to be decoded is determined
* during decoding, based on the number of actual passes available
* in the stream. Thus if <code>minPass + numPasses - 1</code> is
* larger than the index of the last available passes, decoding
* will end with that pass.
*
* <p> A value of <code>numPasses</code> of
* <code>Integer.MAX_VALUE</code> indicates that all passes from
* <code>minPass</code> forward should be read. Otherwise, the
* index of the last pass (<i>i.e.</i>, <code>minPass + numPasses
* - 1</code>) must not exceed <code>Integer.MAX_VALUE</code>.
*
* <p> There is no <code>unsetSourceProgressivePasses</code>
* method; the same effect may be obtained by calling
* <code>setSourceProgressivePasses(0, Integer.MAX_VALUE)</code>.
*
* @param minPass the index of the first pass to be decoded.
* @param numPasses the maximum number of passes to be decoded.
*
* @exception IllegalArgumentException if <code>minPass</code> is
* negative, <code>numPasses</code> is negative or 0, or
* <code>numPasses</code> is smaller than
* <code>Integer.MAX_VALUE</code> but <code>minPass +
* numPasses - 1</code> is greater than
* <code>INTEGER.MAX_VALUE</code>.
*
* @see #getSourceMinProgressivePass
* @see #getSourceMaxProgressivePass
*/
public void setSourceProgressivePasses(int minPass, int numPasses) {
if (minPass < 0) {
throw new IllegalArgumentException("minPass < 0!");
}
if (numPasses <= 0) {
throw new IllegalArgumentException("numPasses <= 0!");
}
if ((numPasses != Integer.MAX_VALUE) &&
(((minPass + numPasses - 1) & 0x80000000) != 0)) {
throw new IllegalArgumentException
("minPass + numPasses - 1 > INTEGER.MAX_VALUE!");
}
this.minProgressivePass = minPass;
this.numProgressivePasses = numPasses;
}
Returns the index of the first progressive pass that will be
decoded. If no value has been set, 0 will be returned (which is
the correct value).
See Also: Returns: the index of the first pass that will be decoded.
/**
* Returns the index of the first progressive pass that will be
* decoded. If no value has been set, 0 will be returned (which is
* the correct value).
*
* @return the index of the first pass that will be decoded.
*
* @see #setSourceProgressivePasses
* @see #getSourceNumProgressivePasses
*/
public int getSourceMinProgressivePass() {
return minProgressivePass;
}
If getSourceNumProgressivePasses
is equal to
Integer.MAX_VALUE
, returns
Integer.MAX_VALUE
. Otherwise, returns
getSourceMinProgressivePass() +
getSourceNumProgressivePasses() - 1
.
Returns: the index of the last pass to be read, or
Integer.MAX_VALUE
.
/**
* If <code>getSourceNumProgressivePasses</code> is equal to
* <code>Integer.MAX_VALUE</code>, returns
* <code>Integer.MAX_VALUE</code>. Otherwise, returns
* <code>getSourceMinProgressivePass() +
* getSourceNumProgressivePasses() - 1</code>.
*
* @return the index of the last pass to be read, or
* <code>Integer.MAX_VALUE</code>.
*/
public int getSourceMaxProgressivePass() {
if (numProgressivePasses == Integer.MAX_VALUE) {
return Integer.MAX_VALUE;
} else {
return minProgressivePass + numProgressivePasses - 1;
}
}
Returns the number of the progressive passes that will be
decoded. If no value has been set,
Integer.MAX_VALUE
will be returned (which is the
correct value).
See Also: Returns: the number of the passes that will be decoded.
/**
* Returns the number of the progressive passes that will be
* decoded. If no value has been set,
* <code>Integer.MAX_VALUE</code> will be returned (which is the
* correct value).
*
* @return the number of the passes that will be decoded.
*
* @see #setSourceProgressivePasses
* @see #getSourceMinProgressivePass
*/
public int getSourceNumProgressivePasses() {
return numProgressivePasses;
}
}