/*
* Copyright (c) 1996, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.awt;
import java.awt.geom.AffineTransform;
import java.awt.geom.PathIterator;
import java.awt.geom.Point2D;
import java.awt.geom.Rectangle2D;
The Shape
interface provides definitions for objects
that represent some form of geometric shape. The Shape
is described by a PathIterator
object, which can express the outline of the Shape
as well as a rule for determining
how the outline divides the 2D plane into interior and exterior
points. Each Shape
object provides callbacks to get the
bounding box of the geometry, determine whether points or
rectangles lie partly or entirely within the interior
of the Shape
, and retrieve a PathIterator
object that describes the trajectory path of the Shape
outline.
Definition of insideness:
A point is considered to lie inside a
Shape
if and only if:
- it lies completely
inside the
Shape
boundary or
-
it lies exactly on the
Shape
boundary and the
space immediately adjacent to the
point in the increasing X
direction is
entirely inside the boundary or
-
it lies exactly on a horizontal boundary segment and the
space immediately adjacent to the point in the
increasing
Y
direction is inside the boundary.
The contains
and intersects
methods
consider the interior of a Shape
to be the area it
encloses as if it were filled. This means that these methods
consider
unclosed shapes to be implicitly closed for the purpose of
determining if a shape contains or intersects a rectangle or if a
shape contains a point.
Author: Jim Graham See Also: Since: 1.2
/**
* The <code>Shape</code> interface provides definitions for objects
* that represent some form of geometric shape. The <code>Shape</code>
* is described by a {@link PathIterator} object, which can express the
* outline of the <code>Shape</code> as well as a rule for determining
* how the outline divides the 2D plane into interior and exterior
* points. Each <code>Shape</code> object provides callbacks to get the
* bounding box of the geometry, determine whether points or
* rectangles lie partly or entirely within the interior
* of the <code>Shape</code>, and retrieve a <code>PathIterator</code>
* object that describes the trajectory path of the <code>Shape</code>
* outline.
* <p>
* <a name="def_insideness"><b>Definition of insideness:</b></a>
* A point is considered to lie inside a
* <code>Shape</code> if and only if:
* <ul>
* <li> it lies completely
* inside the<code>Shape</code> boundary <i>or</i>
* <li>
* it lies exactly on the <code>Shape</code> boundary <i>and</i> the
* space immediately adjacent to the
* point in the increasing <code>X</code> direction is
* entirely inside the boundary <i>or</i>
* <li>
* it lies exactly on a horizontal boundary segment <b>and</b> the
* space immediately adjacent to the point in the
* increasing <code>Y</code> direction is inside the boundary.
* </ul>
* <p>The <code>contains</code> and <code>intersects</code> methods
* consider the interior of a <code>Shape</code> to be the area it
* encloses as if it were filled. This means that these methods
* consider
* unclosed shapes to be implicitly closed for the purpose of
* determining if a shape contains or intersects a rectangle or if a
* shape contains a point.
*
* @see java.awt.geom.PathIterator
* @see java.awt.geom.AffineTransform
* @see java.awt.geom.FlatteningPathIterator
* @see java.awt.geom.GeneralPath
*
* @author Jim Graham
* @since 1.2
*/
public interface Shape {
Returns an integer Rectangle
that completely encloses the Shape
. Note that there is no guarantee that the
returned Rectangle
is the smallest bounding box that
encloses the Shape
, only that the Shape
lies entirely within the indicated Rectangle
. The
returned Rectangle
might also fail to completely
enclose the Shape
if the Shape
overflows
the limited range of the integer data type. The
getBounds2D
method generally returns a
tighter bounding box due to its greater flexibility in
representation.
Note that the
definition of insideness can lead to situations where points on the defining outline of the shape
may not be considered contained in the returned bounds
object, but only in cases where those points are also not considered contained in the original shape
.
If a point
is inside the shape
according to the contains(point)
method, then it must be inside the returned Rectangle
bounds object according to the contains(point)
method of the bounds
. Specifically:
shape.contains(x,y)
requires bounds.contains(x,y)
If a point
is not inside the shape
, then it might still be contained in the bounds
object:
bounds.contains(x,y)
does not imply shape.contains(x,y)
See Also: Returns: an integer Rectangle
that completely encloses
the Shape
. Since: 1.2
/**
* Returns an integer {@link Rectangle} that completely encloses the
* <code>Shape</code>. Note that there is no guarantee that the
* returned <code>Rectangle</code> is the smallest bounding box that
* encloses the <code>Shape</code>, only that the <code>Shape</code>
* lies entirely within the indicated <code>Rectangle</code>. The
* returned <code>Rectangle</code> might also fail to completely
* enclose the <code>Shape</code> if the <code>Shape</code> overflows
* the limited range of the integer data type. The
* <code>getBounds2D</code> method generally returns a
* tighter bounding box due to its greater flexibility in
* representation.
*
* <p>
* Note that the <a href="{@docRoot}/java/awt/Shape.html#def_insideness">
* definition of insideness</a> can lead to situations where points
* on the defining outline of the {@code shape} may not be considered
* contained in the returned {@code bounds} object, but only in cases
* where those points are also not considered contained in the original
* {@code shape}.
* </p>
* <p>
* If a {@code point} is inside the {@code shape} according to the
* {@link #contains(double x, double y) contains(point)} method, then
* it must be inside the returned {@code Rectangle} bounds object
* according to the {@link #contains(double x, double y) contains(point)}
* method of the {@code bounds}. Specifically:
* </p>
* <p>
* {@code shape.contains(x,y)} requires {@code bounds.contains(x,y)}
* </p>
* <p>
* If a {@code point} is not inside the {@code shape}, then it might
* still be contained in the {@code bounds} object:
* </p>
* <p>
* {@code bounds.contains(x,y)} does not imply {@code shape.contains(x,y)}
* </p>
* @return an integer <code>Rectangle</code> that completely encloses
* the <code>Shape</code>.
* @see #getBounds2D
* @since 1.2
*/
public Rectangle getBounds();
Returns a high precision and more accurate bounding box of
the Shape
than the getBounds
method. Note that there is no guarantee that the returned Rectangle2D
is the smallest bounding box that encloses the Shape
, only that the Shape
lies
entirely within the indicated Rectangle2D
. The
bounding box returned by this method is usually tighter than that
returned by the getBounds
method and never fails due
to overflow problems since the return value can be an instance of
the Rectangle2D
that uses double precision values to
store the dimensions.
Note that the
definition of insideness can lead to situations where points on the defining outline of the shape
may not be considered contained in the returned bounds
object, but only in cases where those points are also not considered contained in the original shape
.
If a point
is inside the shape
according to the contains(point)
method, then it must be inside the returned Rectangle2D
bounds object according to the contains(point)
method of the bounds
. Specifically:
shape.contains(p)
requires bounds.contains(p)
If a point
is not inside the shape
, then it might still be contained in the bounds
object:
bounds.contains(p)
does not imply shape.contains(p)
See Also: Returns: an instance of Rectangle2D
that is a
high-precision bounding box of the Shape
. Since: 1.2
/**
* Returns a high precision and more accurate bounding box of
* the <code>Shape</code> than the <code>getBounds</code> method.
* Note that there is no guarantee that the returned
* {@link Rectangle2D} is the smallest bounding box that encloses
* the <code>Shape</code>, only that the <code>Shape</code> lies
* entirely within the indicated <code>Rectangle2D</code>. The
* bounding box returned by this method is usually tighter than that
* returned by the <code>getBounds</code> method and never fails due
* to overflow problems since the return value can be an instance of
* the <code>Rectangle2D</code> that uses double precision values to
* store the dimensions.
*
* <p>
* Note that the <a href="{@docRoot}/java/awt/Shape.html#def_insideness">
* definition of insideness</a> can lead to situations where points
* on the defining outline of the {@code shape} may not be considered
* contained in the returned {@code bounds} object, but only in cases
* where those points are also not considered contained in the original
* {@code shape}.
* </p>
* <p>
* If a {@code point} is inside the {@code shape} according to the
* {@link #contains(Point2D p) contains(point)} method, then it must
* be inside the returned {@code Rectangle2D} bounds object according
* to the {@link #contains(Point2D p) contains(point)} method of the
* {@code bounds}. Specifically:
* </p>
* <p>
* {@code shape.contains(p)} requires {@code bounds.contains(p)}
* </p>
* <p>
* If a {@code point} is not inside the {@code shape}, then it might
* still be contained in the {@code bounds} object:
* </p>
* <p>
* {@code bounds.contains(p)} does not imply {@code shape.contains(p)}
* </p>
* @return an instance of <code>Rectangle2D</code> that is a
* high-precision bounding box of the <code>Shape</code>.
* @see #getBounds
* @since 1.2
*/
public Rectangle2D getBounds2D();
Tests if the specified coordinates are inside the boundary of the
Shape
, as described by the
definition of insideness.
Params: - x – the specified X coordinate to be tested
- y – the specified Y coordinate to be tested
Returns: true
if the specified coordinates are inside
the Shape
boundary; false
otherwise.Since: 1.2
/**
* Tests if the specified coordinates are inside the boundary of the
* <code>Shape</code>, as described by the
* <a href="{@docRoot}/java/awt/Shape.html#def_insideness">
* definition of insideness</a>.
* @param x the specified X coordinate to be tested
* @param y the specified Y coordinate to be tested
* @return <code>true</code> if the specified coordinates are inside
* the <code>Shape</code> boundary; <code>false</code>
* otherwise.
* @since 1.2
*/
public boolean contains(double x, double y);
Tests if a specified Point2D
is inside the boundary of the Shape
, as described by the
definition of insideness.
Params: - p – the specified
Point2D
to be tested
Returns: true
if the specified Point2D
is
inside the boundary of the Shape
;
false
otherwise.Since: 1.2
/**
* Tests if a specified {@link Point2D} is inside the boundary
* of the <code>Shape</code>, as described by the
* <a href="{@docRoot}/java/awt/Shape.html#def_insideness">
* definition of insideness</a>.
* @param p the specified <code>Point2D</code> to be tested
* @return <code>true</code> if the specified <code>Point2D</code> is
* inside the boundary of the <code>Shape</code>;
* <code>false</code> otherwise.
* @since 1.2
*/
public boolean contains(Point2D p);
Tests if the interior of the Shape
intersects the
interior of a specified rectangular area.
The rectangular area is considered to intersect the Shape
if any point is contained in both the interior of the
Shape
and the specified rectangular area.
The Shape.intersects()
method allows a Shape
implementation to conservatively return true
when:
-
there is a high probability that the rectangular area and the
Shape
intersect, but
-
the calculations to accurately determine this intersection
are prohibitively expensive.
This means that for some Shapes
this method might return true
even though the rectangular area does not intersect the Shape
. The Area
class performs more accurate computations of geometric intersection than most Shape
objects and therefore can be used if a more precise answer is required. Params: - x – the X coordinate of the upper-left corner
of the specified rectangular area
- y – the Y coordinate of the upper-left corner
of the specified rectangular area
- w – the width of the specified rectangular area
- h – the height of the specified rectangular area
See Also: Returns: true
if the interior of the Shape
and
the interior of the rectangular area intersect, or are
both highly likely to intersect and intersection calculations
would be too expensive to perform; false
otherwise.Since: 1.2
/**
* Tests if the interior of the <code>Shape</code> intersects the
* interior of a specified rectangular area.
* The rectangular area is considered to intersect the <code>Shape</code>
* if any point is contained in both the interior of the
* <code>Shape</code> and the specified rectangular area.
* <p>
* The {@code Shape.intersects()} method allows a {@code Shape}
* implementation to conservatively return {@code true} when:
* <ul>
* <li>
* there is a high probability that the rectangular area and the
* <code>Shape</code> intersect, but
* <li>
* the calculations to accurately determine this intersection
* are prohibitively expensive.
* </ul>
* This means that for some {@code Shapes} this method might
* return {@code true} even though the rectangular area does not
* intersect the {@code Shape}.
* The {@link java.awt.geom.Area Area} class performs
* more accurate computations of geometric intersection than most
* {@code Shape} objects and therefore can be used if a more precise
* answer is required.
*
* @param x the X coordinate of the upper-left corner
* of the specified rectangular area
* @param y the Y coordinate of the upper-left corner
* of the specified rectangular area
* @param w the width of the specified rectangular area
* @param h the height of the specified rectangular area
* @return <code>true</code> if the interior of the <code>Shape</code> and
* the interior of the rectangular area intersect, or are
* both highly likely to intersect and intersection calculations
* would be too expensive to perform; <code>false</code> otherwise.
* @see java.awt.geom.Area
* @since 1.2
*/
public boolean intersects(double x, double y, double w, double h);
Tests if the interior of the Shape
intersects the
interior of a specified Rectangle2D
. The Shape.intersects()
method allows a Shape
implementation to conservatively return true
when:
-
there is a high probability that the
Rectangle2D
and the
Shape
intersect, but
-
the calculations to accurately determine this intersection
are prohibitively expensive.
This means that for some Shapes
this method might return true
even though the Rectangle2D
does not intersect the Shape
. The Area
class performs more accurate computations of geometric intersection than most Shape
objects and therefore can be used if a more precise answer is required. Params: - r – the specified
Rectangle2D
See Also: Returns: true
if the interior of the Shape
and
the interior of the specified Rectangle2D
intersect, or are both highly likely to intersect and intersection
calculations would be too expensive to perform; false
otherwise.Since: 1.2
/**
* Tests if the interior of the <code>Shape</code> intersects the
* interior of a specified <code>Rectangle2D</code>.
* The {@code Shape.intersects()} method allows a {@code Shape}
* implementation to conservatively return {@code true} when:
* <ul>
* <li>
* there is a high probability that the <code>Rectangle2D</code> and the
* <code>Shape</code> intersect, but
* <li>
* the calculations to accurately determine this intersection
* are prohibitively expensive.
* </ul>
* This means that for some {@code Shapes} this method might
* return {@code true} even though the {@code Rectangle2D} does not
* intersect the {@code Shape}.
* The {@link java.awt.geom.Area Area} class performs
* more accurate computations of geometric intersection than most
* {@code Shape} objects and therefore can be used if a more precise
* answer is required.
*
* @param r the specified <code>Rectangle2D</code>
* @return <code>true</code> if the interior of the <code>Shape</code> and
* the interior of the specified <code>Rectangle2D</code>
* intersect, or are both highly likely to intersect and intersection
* calculations would be too expensive to perform; <code>false</code>
* otherwise.
* @see #intersects(double, double, double, double)
* @since 1.2
*/
public boolean intersects(Rectangle2D r);
Tests if the interior of the Shape
entirely contains
the specified rectangular area. All coordinates that lie inside
the rectangular area must lie within the Shape
for the
entire rectangular area to be considered contained within the
Shape
.
The Shape.contains()
method allows a Shape
implementation to conservatively return false
when:
-
the
intersect
method returns true
and
-
the calculations to determine whether or not the
Shape
entirely contains the rectangular area are
prohibitively expensive.
This means that for some Shapes
this method might return false
even though the Shape
contains the rectangular area. The Area
class performs more accurate geometric computations than most Shape
objects and therefore can be used if a more precise answer is required. Params: - x – the X coordinate of the upper-left corner
of the specified rectangular area
- y – the Y coordinate of the upper-left corner
of the specified rectangular area
- w – the width of the specified rectangular area
- h – the height of the specified rectangular area
See Also: Returns: true
if the interior of the Shape
entirely contains the specified rectangular area;
false
otherwise or, if the Shape
contains the rectangular area and the
intersects
method returns true
and the containment calculations would be too expensive to
perform.Since: 1.2
/**
* Tests if the interior of the <code>Shape</code> entirely contains
* the specified rectangular area. All coordinates that lie inside
* the rectangular area must lie within the <code>Shape</code> for the
* entire rectangular area to be considered contained within the
* <code>Shape</code>.
* <p>
* The {@code Shape.contains()} method allows a {@code Shape}
* implementation to conservatively return {@code false} when:
* <ul>
* <li>
* the <code>intersect</code> method returns <code>true</code> and
* <li>
* the calculations to determine whether or not the
* <code>Shape</code> entirely contains the rectangular area are
* prohibitively expensive.
* </ul>
* This means that for some {@code Shapes} this method might
* return {@code false} even though the {@code Shape} contains
* the rectangular area.
* The {@link java.awt.geom.Area Area} class performs
* more accurate geometric computations than most
* {@code Shape} objects and therefore can be used if a more precise
* answer is required.
*
* @param x the X coordinate of the upper-left corner
* of the specified rectangular area
* @param y the Y coordinate of the upper-left corner
* of the specified rectangular area
* @param w the width of the specified rectangular area
* @param h the height of the specified rectangular area
* @return <code>true</code> if the interior of the <code>Shape</code>
* entirely contains the specified rectangular area;
* <code>false</code> otherwise or, if the <code>Shape</code>
* contains the rectangular area and the
* <code>intersects</code> method returns <code>true</code>
* and the containment calculations would be too expensive to
* perform.
* @see java.awt.geom.Area
* @see #intersects
* @since 1.2
*/
public boolean contains(double x, double y, double w, double h);
Tests if the interior of the Shape
entirely contains the
specified Rectangle2D
. The Shape.contains()
method allows a Shape
implementation to conservatively return false
when:
-
the
intersect
method returns true
and
-
the calculations to determine whether or not the
Shape
entirely contains the Rectangle2D
are prohibitively expensive.
This means that for some Shapes
this method might return false
even though the Shape
contains the Rectangle2D
. The Area
class performs more accurate geometric computations than most Shape
objects and therefore can be used if a more precise answer is required. Params: - r – The specified
Rectangle2D
See Also: Returns: true
if the interior of the Shape
entirely contains the Rectangle2D
;
false
otherwise or, if the Shape
contains the Rectangle2D
and the
intersects
method returns true
and the containment calculations would be too expensive to
perform.Since: 1.2
/**
* Tests if the interior of the <code>Shape</code> entirely contains the
* specified <code>Rectangle2D</code>.
* The {@code Shape.contains()} method allows a {@code Shape}
* implementation to conservatively return {@code false} when:
* <ul>
* <li>
* the <code>intersect</code> method returns <code>true</code> and
* <li>
* the calculations to determine whether or not the
* <code>Shape</code> entirely contains the <code>Rectangle2D</code>
* are prohibitively expensive.
* </ul>
* This means that for some {@code Shapes} this method might
* return {@code false} even though the {@code Shape} contains
* the {@code Rectangle2D}.
* The {@link java.awt.geom.Area Area} class performs
* more accurate geometric computations than most
* {@code Shape} objects and therefore can be used if a more precise
* answer is required.
*
* @param r The specified <code>Rectangle2D</code>
* @return <code>true</code> if the interior of the <code>Shape</code>
* entirely contains the <code>Rectangle2D</code>;
* <code>false</code> otherwise or, if the <code>Shape</code>
* contains the <code>Rectangle2D</code> and the
* <code>intersects</code> method returns <code>true</code>
* and the containment calculations would be too expensive to
* perform.
* @see #contains(double, double, double, double)
* @since 1.2
*/
public boolean contains(Rectangle2D r);
Returns an iterator object that iterates along the
Shape
boundary and provides access to the geometry of the
Shape
outline. If an optional AffineTransform
is specified, the coordinates returned in the iteration are transformed accordingly.
Each call to this method returns a fresh PathIterator
object that traverses the geometry of the Shape
object
independently from any other PathIterator
objects in use
at the same time.
It is recommended, but not guaranteed, that objects
implementing the Shape
interface isolate iterations
that are in process from any changes that might occur to the original
object's geometry during such iterations.
Params: - at – an optional
AffineTransform
to be applied to the
coordinates as they are returned in the iteration, or
null
if untransformed coordinates are desired
Returns: a new PathIterator
object, which independently
traverses the geometry of the Shape
. Since: 1.2
/**
* Returns an iterator object that iterates along the
* <code>Shape</code> boundary and provides access to the geometry of the
* <code>Shape</code> outline. If an optional {@link AffineTransform}
* is specified, the coordinates returned in the iteration are
* transformed accordingly.
* <p>
* Each call to this method returns a fresh <code>PathIterator</code>
* object that traverses the geometry of the <code>Shape</code> object
* independently from any other <code>PathIterator</code> objects in use
* at the same time.
* <p>
* It is recommended, but not guaranteed, that objects
* implementing the <code>Shape</code> interface isolate iterations
* that are in process from any changes that might occur to the original
* object's geometry during such iterations.
*
* @param at an optional <code>AffineTransform</code> to be applied to the
* coordinates as they are returned in the iteration, or
* <code>null</code> if untransformed coordinates are desired
* @return a new <code>PathIterator</code> object, which independently
* traverses the geometry of the <code>Shape</code>.
* @since 1.2
*/
public PathIterator getPathIterator(AffineTransform at);
Returns an iterator object that iterates along the Shape
boundary and provides access to a flattened view of the
Shape
outline geometry.
Only SEG_MOVETO, SEG_LINETO, and SEG_CLOSE point types are
returned by the iterator.
If an optional AffineTransform
is specified,
the coordinates returned in the iteration are transformed
accordingly.
The amount of subdivision of the curved segments is controlled
by the flatness
parameter, which specifies the
maximum distance that any point on the unflattened transformed
curve can deviate from the returned flattened path segments.
Note that a limit on the accuracy of the flattened path might be
silently imposed, causing very small flattening parameters to be
treated as larger values. This limit, if there is one, is
defined by the particular implementation that is used.
Each call to this method returns a fresh PathIterator
object that traverses the Shape
object geometry
independently from any other PathIterator
objects in use at
the same time.
It is recommended, but not guaranteed, that objects
implementing the Shape
interface isolate iterations
that are in process from any changes that might occur to the original
object's geometry during such iterations.
Params: - at – an optional
AffineTransform
to be applied to the
coordinates as they are returned in the iteration, or
null
if untransformed coordinates are desired - flatness – the maximum distance that the line segments used to
approximate the curved segments are allowed to deviate
from any point on the original curve
Returns: a new PathIterator
that independently traverses
a flattened view of the geometry of the Shape
. Since: 1.2
/**
* Returns an iterator object that iterates along the <code>Shape</code>
* boundary and provides access to a flattened view of the
* <code>Shape</code> outline geometry.
* <p>
* Only SEG_MOVETO, SEG_LINETO, and SEG_CLOSE point types are
* returned by the iterator.
* <p>
* If an optional <code>AffineTransform</code> is specified,
* the coordinates returned in the iteration are transformed
* accordingly.
* <p>
* The amount of subdivision of the curved segments is controlled
* by the <code>flatness</code> parameter, which specifies the
* maximum distance that any point on the unflattened transformed
* curve can deviate from the returned flattened path segments.
* Note that a limit on the accuracy of the flattened path might be
* silently imposed, causing very small flattening parameters to be
* treated as larger values. This limit, if there is one, is
* defined by the particular implementation that is used.
* <p>
* Each call to this method returns a fresh <code>PathIterator</code>
* object that traverses the <code>Shape</code> object geometry
* independently from any other <code>PathIterator</code> objects in use at
* the same time.
* <p>
* It is recommended, but not guaranteed, that objects
* implementing the <code>Shape</code> interface isolate iterations
* that are in process from any changes that might occur to the original
* object's geometry during such iterations.
*
* @param at an optional <code>AffineTransform</code> to be applied to the
* coordinates as they are returned in the iteration, or
* <code>null</code> if untransformed coordinates are desired
* @param flatness the maximum distance that the line segments used to
* approximate the curved segments are allowed to deviate
* from any point on the original curve
* @return a new <code>PathIterator</code> that independently traverses
* a flattened view of the geometry of the <code>Shape</code>.
* @since 1.2
*/
public PathIterator getPathIterator(AffineTransform at, double flatness);
}