/*
 * Copyright (c) 1998, 2000, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */
package com.sun.tools.jdi;

import java.io.*;
import java.util.*;

/**
 * Hash table based implementation of the Map interface.  This implementation
 * provides all of the optional Map operations, and permits null values and
 * the null key.  (HashMap is roughly equivalent to Hashtable, except that it
 * is unsynchronized and permits nulls.) In addition, elements in the map are
 * ordered and doubly linked together.
 * <p>
 * This implementation provides constant-time performance for the basic
 * operations (get and put), assuming the the hash function disperses the
 * elements properly among the buckets.  Iteration over Collection views
 * requires time proportional to its size (the number of key-value mappings)
 * and returns elements in the order they are linked. In a HashMap the
 * iteration would require time  proportional to the capacity of the map
 * plus the map size.
 * <p>
 * An instance of LinkedHashMap has two parameters that affect its efficiency:
 * its <i>capacity</i> and its <i>load factor</i>. The load factor should be
 * between 0.0 and 1.0. When the number of mappings in the LinkedHashMap exceeds
 * the product of the load factor and the current capacity, the capacity is
 * increased by calling the rehash method which requires time proportional
 * to the number of key-value mappings in the map. Larger load factors
 * use memory more efficiently, at the expense of larger expected time per
 * lookup.
 * <p>
 * If many mappings are to be stored in a LinkedHashMap, creating it with a
 * sufficiently large capacity will allow the mappings to be stored more
 * efficiently than letting it perform automatic rehashing as needed to grow
 * the table.
 * <p>
 * <strong>Note that this implementation is not synchronized.</strong> If
 * multiple threads access a LinkedHashMap concurrently, and at least one of the
 * threads modifies the LinkedHashMap structurally, it <em>must</em> be
 * synchronized externally.  (A structural modification is any operation that
 * adds or deletes one or more mappings; merely changing the value associated
 * with a key that is already contained in the Table is not a structural
 * modification.)  This is typically accomplished by synchronizing on some
 * object that naturally encapsulates the LinkedHashMap.  If no such object
 * exists, the LinkedHashMap should be "wrapped" using the
 * Collections.synchronizedSet method.  This is best done at creation time, to
 * prevent accidental unsynchronized access to the LinkedHashMap:
 * <pre>
 *      Map m = Collections.synchronizedMap(new LinkedHashMap(...));
 * </pre>
 * <p>
 * The Iterators returned by the iterator methods of the Collections returned
 * by all of LinkedHashMap's "collection view methods" are <em>fail-fast</em>:
 * if the LinkedHashMap is structurally modified at any time after the Iterator
 * is created, in any way except through the Iterator's own remove or add
 * methods, the Iterator will throw a ConcurrentModificationException.  Thus,
 * in the face of concurrent modification, the Iterator fails quickly and
 * cleanly, rather than risking arbitrary, non-deterministic behavior at an
 * undetermined time in the future.
 *
 * @author  Josh Bloch
 * @author  Arthur van Hoff
 * @author  Zhenghua Li
 * @see     Object#hashCode()
 * @see     java.util.Collection
 * @see     java.util.Map
 * @see     java.util.TreeMap
 * @see     java.util.Hashtable
 * @see     java.util.HashMap
 */

import java.io.Serializable;

public class LinkedHashMap extends AbstractMap implements Map, Serializable {
    
The hash table data.
/** * The hash table data. */
private transient Entry table[];
The head of the double linked list.
/** * The head of the double linked list. */
private transient Entry header;
The total number of mappings in the hash table.
/** * The total number of mappings in the hash table. */
private transient int count;
Rehashes the table when count exceeds this threshold.
/** * Rehashes the table when count exceeds this threshold. */
private int threshold;
The load factor for the LinkedHashMap.
/** * The load factor for the LinkedHashMap. */
private float loadFactor;
The number of times this LinkedHashMap has been structurally modified Structural modifications are those that change the number of mappings in the LinkedHashMap or otherwise modify its internal structure (e.g., rehash). This field is used to make iterators on Collection-views of the LinkedHashMap fail-fast. (See ConcurrentModificationException).
/** * The number of times this LinkedHashMap has been structurally modified * Structural modifications are those that change the number of mappings in * the LinkedHashMap or otherwise modify its internal structure (e.g., * rehash). This field is used to make iterators on Collection-views of * the LinkedHashMap fail-fast. (See ConcurrentModificationException). */
private transient int modCount = 0;
Constructs a new, empty LinkedHashMap with the specified initial capacity and the specified load factor.
Params:
  • initialCapacity – the initial capacity of the LinkedHashMap.
  • loadFactor – a number between 0.0 and 1.0.
Throws:
  • IllegalArgumentException – if the initial capacity is less than or equal to zero, or if the load factor is less than or equal to zero.
/** * Constructs a new, empty LinkedHashMap with the specified initial * capacity and the specified load factor. * * @param initialCapacity the initial capacity of the LinkedHashMap. * @param loadFactor a number between 0.0 and 1.0. * @exception IllegalArgumentException if the initial capacity is less * than or equal to zero, or if the load factor is less than * or equal to zero. */
public LinkedHashMap(int initialCapacity, float loadFactor) { if (initialCapacity < 0) throw new IllegalArgumentException("Illegal Initial Capacity: "+ initialCapacity); if ((loadFactor > 1) || (loadFactor <= 0)) throw new IllegalArgumentException("Illegal Load factor: "+ loadFactor); if (initialCapacity==0) initialCapacity = 1; this.loadFactor = loadFactor; table = new Entry[initialCapacity]; threshold = (int)(initialCapacity * loadFactor); header = new Entry(-1, null, null, null); header.before = header.after = header; }
Constructs a new, empty LinkedHashMap with the specified initial capacity and default load factor.
Params:
  • initialCapacity – the initial capacity of the LinkedHashMap.
/** * Constructs a new, empty LinkedHashMap with the specified initial capacity * and default load factor. * * @param initialCapacity the initial capacity of the LinkedHashMap. */
public LinkedHashMap(int initialCapacity) { this(initialCapacity, 0.75f); }
Constructs a new, empty LinkedHashMap with a default capacity and load factor.
/** * Constructs a new, empty LinkedHashMap with a default capacity and load * factor. */
public LinkedHashMap() { this(101, 0.75f); }
Constructs a new LinkedHashMap with the same mappings as the given Map. The LinkedHashMap is created with a capacity of thrice the number of mappings in the given Map or 11 (whichever is greater), and a default load factor.
/** * Constructs a new LinkedHashMap with the same mappings as the given * Map. The LinkedHashMap is created with a capacity of thrice the number * of mappings in the given Map or 11 (whichever is greater), and a * default load factor. */
public LinkedHashMap(Map t) { this(Math.max(3*t.size(), 11), 0.75f); putAll(t); }
Returns the number of key-value mappings in this Map.
/** * Returns the number of key-value mappings in this Map. */
public int size() { return count; }
Returns true if this Map contains no key-value mappings.
/** * Returns true if this Map contains no key-value mappings. */
public boolean isEmpty() { return count == 0; }
Returns true if this LinkedHashMap maps one or more keys to the specified value.
Params:
  • value – value whose presence in this Map is to be tested.
/** * Returns true if this LinkedHashMap maps one or more keys to the specified * value. * * @param value value whose presence in this Map is to be tested. */
public boolean containsValue(Object value) { if (value==null) { for (Entry e = header.after; e != header; e = e.after) if (e.value==null) return true; } else { for (Entry e = header.after; e != header; e = e.after) if (value.equals(e.value)) return true; } return false; }
Returns true if this LinkedHashMap contains a mapping for the specified key.
Params:
  • key – key whose presence in this Map is to be tested.
/** * Returns true if this LinkedHashMap contains a mapping for the specified * key. * * @param key key whose presence in this Map is to be tested. */
public boolean containsKey(Object key) { Entry tab[] = table; if (key != null) { int hash = key.hashCode(); int index = (hash & 0x7FFFFFFF) % tab.length; for (Entry e = tab[index]; e != null; e = e.next) if (e.hash==hash && e.key.equals(key)) return true; } else { for (Entry e = tab[0]; e != null; e = e.next) if (e.key==null) return true; } return false; }
Returns the value to which this LinkedHashMap maps the specified key. Returns null if the LinkedHashMap contains no mapping for this key. A return value of null does not necessarily indicate that the LinkedHashMap contains no mapping for the key; it's also possible that the LinkedHashMap explicitly maps the key to null. The containsKey operation may be used to distinguish these two cases.
Params:
  • key – key whose associated value is to be returned.
/** * Returns the value to which this LinkedHashMap maps the specified key. * Returns null if the LinkedHashMap contains no mapping for this key. * A return value of null does not <em>necessarily</em> indicate that the * LinkedHashMap contains no mapping for the key; it's also possible that * the LinkedHashMap explicitly maps the key to null. The containsKey * operation may be used to distinguish these two cases. * * @param key key whose associated value is to be returned. */
public Object get(Object key) { Entry e = getEntry(key); return e==null ? null : e.value; }
Returns the entry associated with the specified key in the LinkedHashMap. Returns null if the LinkedHashMap contains no mapping for this key.
/** * Returns the entry associated with the specified key in the LinkedHashMap. * Returns null if the LinkedHashMap contains no mapping for this key. */
private Entry getEntry(Object key) { Entry tab[] = table; if (key != null) { int hash = key.hashCode(); int index = (hash & 0x7FFFFFFF) % tab.length; for (Entry e = tab[index]; e != null; e = e.next) if ((e.hash == hash) && e.key.equals(key)) return e; } else { for (Entry e = tab[0]; e != null; e = e.next) if (e.key==null) return e; } return null; }
Rehashes the contents of the LinkedHashMap into a LinkedHashMap with a larger capacity. This method is called automatically when the number of keys in the LinkedHashMap exceeds this LinkedHashMap's capacity and load factor.
/** * Rehashes the contents of the LinkedHashMap into a LinkedHashMap with a * larger capacity. This method is called automatically when the * number of keys in the LinkedHashMap exceeds this LinkedHashMap's capacity * and load factor. */
private void rehash() { int oldCapacity = table.length; Entry oldMap[] = table; int newCapacity = oldCapacity * 2 + 1; Entry newMap[] = new Entry[newCapacity]; modCount++; threshold = (int)(newCapacity * loadFactor); table = newMap; for (Entry e = header.after; e != header; e = e.after) { int index = (e.hash & 0x7FFFFFFF) % newCapacity; e.next = newMap[index]; newMap[index] = e; } }
Remove an entry from the linked list.
/** * Remove an entry from the linked list. */
private void listRemove(Entry entry) { if (entry == null) { return; } entry.before.after = entry.after; entry.after.before = entry.before; }
Add the specified entry before the specified existing entry to the linked list.
/** * Add the specified entry before the specified existing entry to * the linked list. */
private void listAddBefore(Entry entry, Entry existEntry) { entry.after = existEntry; entry.before = existEntry.before; entry.before.after = entry; entry.after.before = entry; }
Returns the position of the mapping for the specified key in the ordered map.
Params:
  • key – the specified key.
Returns:index of the key mapping.
/** * Returns the position of the mapping for the specified key * in the ordered map. * * @param key the specified key. * @return index of the key mapping. */
public int indexOf(Object key) { int i = 0; if (key == null) { for (Entry e = header.after; e != header; e = e.after, i++) if (e.key == null) return i; } else { for (Entry e = header.after; e != header; e = e.after, i++) if(key.equals(e.key)) return i; } return -1; }
Associates the specified value with the specified key in this LinkedHashMap. If the LinkedHashMap previously contained a mapping for this key, the old value is replaced and the position of this mapping entry in the double linked list remains the same. Otherwise, a new mapping entry is created and inserted into the list before the specified existing mapping entry. The method returns the previous value associated with the specified key, or null if there was no mapping for key. A null return can also indicate that the LinkedHashMap previously associated null with the specified key.
/** * Associates the specified value with the specified key in this * LinkedHashMap. If the LinkedHashMap previously contained a mapping for * this key, the old value is replaced and the position of this mapping * entry in the double linked list remains the same. Otherwise, a new * mapping entry is created and inserted into the list before the specified * existing mapping entry. The method returns the previous value associated * with the specified key, or null if there was no mapping for key. A null * return can also indicate that the LinkedHashMap previously associated * null with the specified key. */
private Object putAhead(Object key, Object value, Entry existEntry) { // Makes sure the key is not already in the LinkedHashMap. Entry tab[] = table; int hash = 0; int index = 0; if (key != null) { hash = key.hashCode(); index = (hash & 0x7FFFFFFF) % tab.length; for (Entry e = tab[index] ; e != null ; e = e.next) { if ((e.hash == hash) && e.key.equals(key)) { Object old = e.value; e.value = value; return old; } } } else { for (Entry e = tab[0] ; e != null ; e = e.next) { if (e.key == null) { Object old = e.value; e.value = value; return old; } } } modCount++; if (count >= threshold) { // Rehash the table if the threshold is exceeded rehash(); tab = table; index = (hash & 0x7FFFFFFF) % tab.length; } // Creates the new entry. Entry e = new Entry(hash, key, value, tab[index]); tab[index] = e; listAddBefore(e, existEntry); count++; return null; }
Associates the specified value with the specified key in this LinkedHashMap and position the mapping at the specified index. If the LinkedHashMap previously contained a mapping for this key, the old value is replaced and the position of this mapping entry in the double linked list remains the same. Otherwise, a new mapping entry is created and inserted into the list at the specified position.
Params:
  • index – the position to put the key-value mapping.
  • key – key with which the specified value is to be associated.
  • value – value to be associated with the specified key.
Returns:previous value associated with specified key, or null if there was no mapping for key. A null return can also indicate that the LinkedHashMap previously associated null with the specified key.
/** * Associates the specified value with the specified key in this * LinkedHashMap and position the mapping at the specified index. * If the LinkedHashMap previously contained a mapping for this key, * the old value is replaced and the position of this mapping entry * in the double linked list remains the same. Otherwise, a new mapping * entry is created and inserted into the list at the specified * position. * * @param index the position to put the key-value mapping. * @param key key with which the specified value is to be associated. * @param value value to be associated with the specified key. * @return previous value associated with specified key, or null if there * was no mapping for key. A null return can also indicate that * the LinkedHashMap previously associated null with the specified * key. */
public Object put(int index, Object key, Object value) { if (index < 0 || index > count) throw new IndexOutOfBoundsException(); Entry e = header.after; if (index == count) return putAhead(key, value, header); //fast approach for append else { for (int i = 0; i < index; i++) e = e.after; return putAhead(key, value, e); } }
Associates the specified value with the specified key in this LinkedHashMap. If the LinkedHashMap previously contained a mapping for this key, the old value is replaced. The mapping entry is also appended to the end of the ordered linked list.
Params:
  • key – key with which the specified value is to be associated.
  • value – value to be associated with the specified key.
Returns:previous value associated with specified key, or null if there was no mapping for key. A null return can also indicate that the LinkedHashMap previously associated null with the specified key.
/** * Associates the specified value with the specified key in this * LinkedHashMap. If the LinkedHashMap previously contained a mapping for * this key, the old value is replaced. The mapping entry is also appended * to the end of the ordered linked list. * * @param key key with which the specified value is to be associated. * @param value value to be associated with the specified key. * @return previous value associated with specified key, or null if there * was no mapping for key. A null return can also indicate that * the LinkedHashMap previously associated null with the specified * key. */
public Object put(Object key, Object value) { return putAhead(key, value, header); }
Removes the mapping for this key from this LinkedHashMap if present. The mapping would also be removed from the double linked list.
Params:
  • key – key whose mapping is to be removed from the Map.
Returns:previous value associated with specified key, or null if there was no mapping for key. A null return can also indicate that the LinkedHashMap previously associated null with the specified key.
/** * Removes the mapping for this key from this LinkedHashMap if present. * The mapping would also be removed from the double linked list. * * @param key key whose mapping is to be removed from the Map. * @return previous value associated with specified key, or null if there * was no mapping for key. A null return can also indicate that * the LinkedHashMap previously associated null with the specified * key. */
public Object remove(Object key) { Entry tab[] = table; if (key != null) { int hash = key.hashCode(); int index = (hash & 0x7FFFFFFF) % tab.length; for (Entry e = tab[index], prev = null; e != null; prev = e, e = e.next) { if ((e.hash == hash) && e.key.equals(key)) { modCount++; if (prev != null) prev.next = e.next; else tab[index] = e.next; count--; Object oldValue = e.value; e.value = null; listRemove(e); return oldValue; } } } else { for (Entry e = tab[0], prev = null; e != null; prev = e, e = e.next) { if (e.key == null) { modCount++; if (prev != null) prev.next = e.next; else tab[0] = e.next; count--; Object oldValue = e.value; e.value = null; listRemove(e); return oldValue; } } } return null; }
Copies all of the mappings from the specified Map to this LinkedHashMap These mappings will replace any mappings that this LinkedHashMap had for any of the keys currently in the specified Map.
Params:
  • t – Mappings to be stored in this Map.
/** * Copies all of the mappings from the specified Map to this LinkedHashMap * These mappings will replace any mappings that this LinkedHashMap had for * any of the keys currently in the specified Map. * * @param t Mappings to be stored in this Map. */
public void putAll(Map t) { Iterator i = t.entrySet().iterator(); while (i.hasNext()) { Map.Entry e = (Map.Entry) i.next(); put(e.getKey(), e.getValue()); } }
Removes all mappings from this LinkedHashMap.
/** * Removes all mappings from this LinkedHashMap. */
public void clear() { Entry tab[] = table; modCount++; for (int index = tab.length; --index >= 0; ) tab[index] = null; count = 0; header.before = header.after = header; }
Returns a shallow copy of this LinkedHashMap. The keys and values themselves are not cloned.
/** * Returns a shallow copy of this LinkedHashMap. The keys and values * themselves are not cloned. */
public Object clone() { return new LinkedHashMap(this); } // Views private transient Set keySet = null; private transient Set entries = null; private transient Collection values = null;
Returns a Set view of the keys contained in this LinkedHashMap. The Set is backed by the LinkedHashMap, so changes to the LinkedHashMap are reflected in the Set, and vice-versa. The Set supports element removal, which removes the corresponding mapping from the LinkedHashMap, via the Iterator.remove, Set.remove, removeAll retainAll, and clear operations. It does not support the add or addAll operations.
/** * Returns a Set view of the keys contained in this LinkedHashMap. The Set * is backed by the LinkedHashMap, so changes to the LinkedHashMap are * reflected in the Set, and vice-versa. The Set supports element removal, * which removes the corresponding mapping from the LinkedHashMap, via the * Iterator.remove, Set.remove, removeAll retainAll, and clear operations. * It does not support the add or addAll operations. */
public Set keySet() { if (keySet == null) { keySet = new AbstractSet() { public Iterator iterator() { return new HashIterator(KEYS); } public int size() { return count; } public boolean contains(Object o) { return containsKey(o); } public boolean remove(Object o) { return LinkedHashMap.this.remove(o) != null; } public void clear() { LinkedHashMap.this.clear(); } }; } return keySet; }
Returns a Collection view of the values contained in this LinkedHashMap. The Collection is backed by the LinkedHashMap, so changes to the LinkedHashMap are reflected in the Collection, and vice-versa. The Collection supports element removal, which removes the corresponding mapping from the LinkedHashMap, via the Iterator.remove, Collection.remove, removeAll, retainAll and clear operations. It does not support the add or addAll operations.
/** * Returns a Collection view of the values contained in this LinkedHashMap. * The Collection is backed by the LinkedHashMap, so changes to the * LinkedHashMap are reflected in the Collection, and vice-versa. The * Collection supports element removal, which removes the corresponding * mapping from the LinkedHashMap, via the Iterator.remove, * Collection.remove, removeAll, retainAll and clear operations. It does * not support the add or addAll operations. */
public Collection values() { if (values==null) { values = new AbstractCollection() { public Iterator iterator() { return new HashIterator(VALUES); } public int size() { return count; } public boolean contains(Object o) { return containsValue(o); } public void clear() { LinkedHashMap.this.clear(); } }; } return values; }
Returns a Collection view of the mappings contained in this LinkedHashMap. Each element in the returned collection is a Map.Entry. The Collection is backed by the LinkedHashMap, so changes to the LinkedHashMap are reflected in the Collection, and vice-versa. The Collection supports element removal, which removes the corresponding mapping from the LinkedHashMap, via the Iterator.remove, Collection.remove, removeAll, retainAll and clear operations. It does not support the add or addAll operations.
See Also:
  • Entry
/** * Returns a Collection view of the mappings contained in this * LinkedHashMap. Each element in the returned collection is a Map.Entry. * The Collection is backed by the LinkedHashMap, so changes to the * LinkedHashMap are reflected in the Collection, and vice-versa. The * Collection supports element removal, which removes the corresponding * mapping from the LinkedHashMap, via the Iterator.remove, * Collection.remove, removeAll, retainAll and clear operations. It does * not support the add or addAll operations. * * @see java.util.Map.Entry */
public Set entrySet() { if (entries==null) { entries = new AbstractSet() { public Iterator iterator() { return new HashIterator(ENTRIES); } public boolean contains(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry entry = (Map.Entry)o; Object key = entry.getKey(); Entry tab[] = table; int hash = (key==null ? 0 : key.hashCode()); int index = (hash & 0x7FFFFFFF) % tab.length; for (Entry e = tab[index]; e != null; e = e.next) if (e.hash==hash && e.equals(entry)) return true; return false; } public boolean remove(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry entry = (Map.Entry)o; Object key = entry.getKey(); Entry tab[] = table; int hash = (key==null ? 0 : key.hashCode()); int index = (hash & 0x7FFFFFFF) % tab.length; for (Entry e = tab[index], prev = null; e != null; prev = e, e = e.next) { if (e.hash==hash && e.equals(entry)) { modCount++; if (prev != null) prev.next = e.next; else tab[index] = e.next; count--; e.value = null; listRemove(e); return true; } } return false; } public int size() { return count; } public void clear() { LinkedHashMap.this.clear(); } }; } return entries; }
Compares the specified Object with this Map for equality. Returns true if the given object is also a LinkedHashMap and the two Maps represent the same mappings in the same order. More formally, two Maps t1 and t2 represent the same mappings if t1.keySet().equals(t2.keySet()) and for every key k in t1.keySet(), (t1.get(k)==null ? t2.get(k)==null : t1.get(k).equals(t2.get(k))) .

This implementation first checks if the specified Object is this Map; if so it returns true. Then, it checks if the specified Object is a Map whose size is identical to the size of this Set; if not, it it returns false. If so, it iterates over this Map and the specified Map's entrySet() Collection, and checks that the specified Map contains each mapping that this Map contains at the same position. If the specified Map fails to contain such a mapping in the right order, false is returned. If the iteration completes, true is returned.

Params:
  • o – Object to be compared for equality with this Map.
Returns:true if the specified Object is equal to this Map.
/** * Compares the specified Object with this Map for equality. * Returns true if the given object is also a LinkedHashMap and the two * Maps represent the same mappings in the same order. More formally, * two Maps <code>t1</code> and <code>t2</code> represent the same mappings * if <code>t1.keySet().equals(t2.keySet())</code> and for every * key <code>k</code> in <code>t1.keySet()</code>, <code> * (t1.get(k)==null ? t2.get(k)==null : t1.get(k).equals(t2.get(k))) * </code>. * <p> * This implementation first checks if the specified Object is this Map; * if so it returns true. Then, it checks if the specified Object is * a Map whose size is identical to the size of this Set; if not, it * it returns false. If so, it iterates over this Map and the specified * Map's entrySet() Collection, and checks that the specified Map contains * each mapping that this Map contains at the same position. If the * specified Map fails to contain such a mapping in the right order, false * is returned. If the iteration completes, true is returned. * * @param o Object to be compared for equality with this Map. * @return true if the specified Object is equal to this Map. * */
public boolean equals(Object o) { if (o == this) return true; if (!(o instanceof LinkedHashMap)) return false; LinkedHashMap t = (LinkedHashMap) o; if (t.size() != size()) return false; Iterator i1 = entrySet().iterator(); Iterator i2 = t.entrySet().iterator(); while (i1.hasNext()) { Entry e1 = (Entry) i1.next(); Entry e2 = (Entry) i2.next(); Object key1 = e1.getKey(); Object value1 = e1.getValue(); Object key2 = e2.getKey(); Object value2 = e2.getValue(); if ((key1 == null ? key2 == null : key1.equals(key2)) && (value1 == null ? value2 == null : value1.equals(value2))) { continue; } else { return false; } } return true; }
LinkedHashMap collision list entry.
/** * LinkedHashMap collision list entry. */
private static class Entry implements Map.Entry { int hash; Object key; Object value; Entry next; // These fields comprise the doubly linked list that is used for // iteration. Entry before, after; Entry(int hash, Object key, Object value, Entry next) { this.hash = hash; this.key = key; this.value = value; this.next = next; } // Map.Entry Ops public Object getKey() { return key; } public Object getValue() { return value; } public Object setValue(Object value) { Object oldValue = this.value; this.value = value; return oldValue; } public boolean equals(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry)o; return (key==null ? e.getKey()==null : key.equals(e.getKey())) && (value==null ? e.getValue()==null : value.equals(e.getValue())); } public int hashCode() { return hash ^ (value==null ? 0 : value.hashCode()); } public String toString() { return key+"="+value; } } // Types of Iterators private static final int KEYS = 0; private static final int VALUES = 1; private static final int ENTRIES = 2; private class HashIterator implements Iterator { private Entry[] table = LinkedHashMap.this.table; private Entry entry = null; private Entry lastReturned = null; private int type;
The modCount value that the iterator believes that the backing List should have. If this expectation is violated, the iterator has detected concurrent modification.
/** * The modCount value that the iterator believes that the backing * List should have. If this expectation is violated, the iterator * has detected concurrent modification. */
private int expectedModCount = modCount; HashIterator(int type) { this.type = type; this.entry = LinkedHashMap.this.header.after; } public boolean hasNext() { return entry != header; } public Object next() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); if (entry == LinkedHashMap.this.header) throw new NoSuchElementException(); Entry e = lastReturned = entry; entry = e.after; return type == KEYS ? e.key : (type == VALUES ? e.value : e); } public void remove() { if (lastReturned == null) throw new IllegalStateException(); if (modCount != expectedModCount) throw new ConcurrentModificationException(); Entry[] tab = LinkedHashMap.this.table; int index = (lastReturned.hash & 0x7FFFFFFF) % tab.length; for (Entry e = tab[index], prev = null; e != null; prev = e, e = e.next) { if (e == lastReturned) { modCount++; expectedModCount++; if (prev == null) tab[index] = e.next; else prev.next = e.next; count--; listRemove(e); lastReturned = null; return; } } throw new ConcurrentModificationException(); } }
Save the state of the LinkedHashMap to a stream (i.e., serialize it). The objects will be written out in the order they are linked in the list.
/** * Save the state of the LinkedHashMap to a stream (i.e., serialize it). * The objects will be written out in the order they are linked * in the list. */
private void writeObject(java.io.ObjectOutputStream s) throws IOException { // Write out the threshold, loadfactor, and any hidden stuff s.defaultWriteObject(); // Write out number of buckets s.writeInt(table.length); // Write out size (number of Mappings) s.writeInt(count); // Write out keys and values (alternating) for (Entry e = header.after; e != header; e = e.after) { s.writeObject(e.key); s.writeObject(e.value); } }
Reconstitute the LinkedHashMap from a stream (i.e., deserialize it).
/** * Reconstitute the LinkedHashMap from a stream (i.e., deserialize it). */
private void readObject(java.io.ObjectInputStream s) throws IOException, ClassNotFoundException { // Read in the threshold, loadfactor, and any hidden stuff s.defaultReadObject(); // Read in number of buckets and allocate the bucket array; int numBuckets = s.readInt(); table = new Entry[numBuckets]; header = new Entry(-1, null, null, null); header.before = header; header.after = header; // Read in size (number of Mappings) int size = s.readInt(); // Read the keys and values, and put the mappings in the LinkedHashMap for (int i=0; i<size; i++) { Object key = s.readObject(); Object value = s.readObject(); put(key, value); } } }