/*
 * Copyright (c) 2017, 2021, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */
package jdk.incubator.vector;

import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.ReadOnlyBufferException;
import java.util.Arrays;
import java.util.Objects;
import java.util.function.BinaryOperator;
import java.util.function.Function;
import java.util.function.UnaryOperator;

import jdk.internal.misc.Unsafe;
import jdk.internal.vm.annotation.ForceInline;
import jdk.internal.vm.vector.VectorSupport;

import static jdk.internal.vm.vector.VectorSupport.*;
import static jdk.incubator.vector.VectorIntrinsics.*;

import static jdk.incubator.vector.VectorOperators.*;

// -- This file was mechanically generated: Do not edit! -- //

A specialized Vector representing an ordered immutable sequence of double values.
/** * A specialized {@link Vector} representing an ordered immutable sequence of * {@code double} values. */
@SuppressWarnings("cast") // warning: redundant cast public abstract class DoubleVector extends AbstractVector<Double> { DoubleVector(double[] vec) { super(vec); } static final int FORBID_OPCODE_KIND = VO_NOFP; @ForceInline static int opCode(Operator op) { return VectorOperators.opCode(op, VO_OPCODE_VALID, FORBID_OPCODE_KIND); } @ForceInline static int opCode(Operator op, int requireKind) { requireKind |= VO_OPCODE_VALID; return VectorOperators.opCode(op, requireKind, FORBID_OPCODE_KIND); } @ForceInline static boolean opKind(Operator op, int bit) { return VectorOperators.opKind(op, bit); } // Virtualized factories and operators, // coded with portable definitions. // These are all @ForceInline in case // they need to be used performantly. // The various shape-specific subclasses // also specialize them by wrapping // them in a call like this: // return (Byte128Vector) // super.bOp((Byte128Vector) o); // The purpose of that is to forcibly inline // the generic definition from this file // into a sharply type- and size-specific // wrapper in the subclass file, so that // the JIT can specialize the code. // The code is only inlined and expanded // if it gets hot. Think of it as a cheap // and lazy version of C++ templates. // Virtualized getter /*package-private*/ abstract double[] vec(); // Virtualized constructors
Build a vector directly using my own constructor. It is an error if the array is aliased elsewhere.
/** * Build a vector directly using my own constructor. * It is an error if the array is aliased elsewhere. */
/*package-private*/ abstract DoubleVector vectorFactory(double[] vec);
Build a mask directly using my species. It is an error if the array is aliased elsewhere.
/** * Build a mask directly using my species. * It is an error if the array is aliased elsewhere. */
/*package-private*/ @ForceInline final AbstractMask<Double> maskFactory(boolean[] bits) { return vspecies().maskFactory(bits); } // Constant loader (takes dummy as vector arg) interface FVOp { double apply(int i); } /*package-private*/ @ForceInline final DoubleVector vOp(FVOp f) { double[] res = new double[length()]; for (int i = 0; i < res.length; i++) { res[i] = f.apply(i); } return vectorFactory(res); } @ForceInline final DoubleVector vOp(VectorMask<Double> m, FVOp f) { double[] res = new double[length()]; boolean[] mbits = ((AbstractMask<Double>)m).getBits(); for (int i = 0; i < res.length; i++) { if (mbits[i]) { res[i] = f.apply(i); } } return vectorFactory(res); } // Unary operator /*package-private*/ interface FUnOp { double apply(int i, double a); } /*package-private*/ abstract DoubleVector uOp(FUnOp f); @ForceInline final DoubleVector uOpTemplate(FUnOp f) { double[] vec = vec(); double[] res = new double[length()]; for (int i = 0; i < res.length; i++) { res[i] = f.apply(i, vec[i]); } return vectorFactory(res); } /*package-private*/ abstract DoubleVector uOp(VectorMask<Double> m, FUnOp f); @ForceInline final DoubleVector uOpTemplate(VectorMask<Double> m, FUnOp f) { double[] vec = vec(); double[] res = new double[length()]; boolean[] mbits = ((AbstractMask<Double>)m).getBits(); for (int i = 0; i < res.length; i++) { res[i] = mbits[i] ? f.apply(i, vec[i]) : vec[i]; } return vectorFactory(res); } // Binary operator /*package-private*/ interface FBinOp { double apply(int i, double a, double b); } /*package-private*/ abstract DoubleVector bOp(Vector<Double> o, FBinOp f); @ForceInline final DoubleVector bOpTemplate(Vector<Double> o, FBinOp f) { double[] res = new double[length()]; double[] vec1 = this.vec(); double[] vec2 = ((DoubleVector)o).vec(); for (int i = 0; i < res.length; i++) { res[i] = f.apply(i, vec1[i], vec2[i]); } return vectorFactory(res); } /*package-private*/ abstract DoubleVector bOp(Vector<Double> o, VectorMask<Double> m, FBinOp f); @ForceInline final DoubleVector bOpTemplate(Vector<Double> o, VectorMask<Double> m, FBinOp f) { double[] res = new double[length()]; double[] vec1 = this.vec(); double[] vec2 = ((DoubleVector)o).vec(); boolean[] mbits = ((AbstractMask<Double>)m).getBits(); for (int i = 0; i < res.length; i++) { res[i] = mbits[i] ? f.apply(i, vec1[i], vec2[i]) : vec1[i]; } return vectorFactory(res); } // Ternary operator /*package-private*/ interface FTriOp { double apply(int i, double a, double b, double c); } /*package-private*/ abstract DoubleVector tOp(Vector<Double> o1, Vector<Double> o2, FTriOp f); @ForceInline final DoubleVector tOpTemplate(Vector<Double> o1, Vector<Double> o2, FTriOp f) { double[] res = new double[length()]; double[] vec1 = this.vec(); double[] vec2 = ((DoubleVector)o1).vec(); double[] vec3 = ((DoubleVector)o2).vec(); for (int i = 0; i < res.length; i++) { res[i] = f.apply(i, vec1[i], vec2[i], vec3[i]); } return vectorFactory(res); } /*package-private*/ abstract DoubleVector tOp(Vector<Double> o1, Vector<Double> o2, VectorMask<Double> m, FTriOp f); @ForceInline final DoubleVector tOpTemplate(Vector<Double> o1, Vector<Double> o2, VectorMask<Double> m, FTriOp f) { double[] res = new double[length()]; double[] vec1 = this.vec(); double[] vec2 = ((DoubleVector)o1).vec(); double[] vec3 = ((DoubleVector)o2).vec(); boolean[] mbits = ((AbstractMask<Double>)m).getBits(); for (int i = 0; i < res.length; i++) { res[i] = mbits[i] ? f.apply(i, vec1[i], vec2[i], vec3[i]) : vec1[i]; } return vectorFactory(res); } // Reduction operator /*package-private*/ abstract double rOp(double v, FBinOp f); @ForceInline final double rOpTemplate(double v, FBinOp f) { double[] vec = vec(); for (int i = 0; i < vec.length; i++) { v = f.apply(i, v, vec[i]); } return v; } // Memory reference /*package-private*/ interface FLdOp<M> { double apply(M memory, int offset, int i); } /*package-private*/ @ForceInline final <M> DoubleVector ldOp(M memory, int offset, FLdOp<M> f) { //dummy; no vec = vec(); double[] res = new double[length()]; for (int i = 0; i < res.length; i++) { res[i] = f.apply(memory, offset, i); } return vectorFactory(res); } /*package-private*/ @ForceInline final <M> DoubleVector ldOp(M memory, int offset, VectorMask<Double> m, FLdOp<M> f) { //double[] vec = vec(); double[] res = new double[length()]; boolean[] mbits = ((AbstractMask<Double>)m).getBits(); for (int i = 0; i < res.length; i++) { if (mbits[i]) { res[i] = f.apply(memory, offset, i); } } return vectorFactory(res); } interface FStOp<M> { void apply(M memory, int offset, int i, double a); } /*package-private*/ @ForceInline final <M> void stOp(M memory, int offset, FStOp<M> f) { double[] vec = vec(); for (int i = 0; i < vec.length; i++) { f.apply(memory, offset, i, vec[i]); } } /*package-private*/ @ForceInline final <M> void stOp(M memory, int offset, VectorMask<Double> m, FStOp<M> f) { double[] vec = vec(); boolean[] mbits = ((AbstractMask<Double>)m).getBits(); for (int i = 0; i < vec.length; i++) { if (mbits[i]) { f.apply(memory, offset, i, vec[i]); } } } // Binary test /*package-private*/ interface FBinTest { boolean apply(int cond, int i, double a, double b); } /*package-private*/ @ForceInline final AbstractMask<Double> bTest(int cond, Vector<Double> o, FBinTest f) { double[] vec1 = vec(); double[] vec2 = ((DoubleVector)o).vec(); boolean[] bits = new boolean[length()]; for (int i = 0; i < length(); i++){ bits[i] = f.apply(cond, i, vec1[i], vec2[i]); } return maskFactory(bits); } /*package-private*/ @ForceInline static boolean doBinTest(int cond, double a, double b) { switch (cond) { case BT_eq: return a == b; case BT_ne: return a != b; case BT_lt: return a < b; case BT_le: return a <= b; case BT_gt: return a > b; case BT_ge: return a >= b; } throw new AssertionError(Integer.toHexString(cond)); } /*package-private*/ @Override abstract DoubleSpecies vspecies(); /*package-private*/ @ForceInline static long toBits(double e) { return Double.doubleToRawLongBits(e); } /*package-private*/ @ForceInline static double fromBits(long bits) { return Double.longBitsToDouble((long)bits); } // Static factories (other than memory operations) // Note: A surprising behavior in javadoc // sometimes makes a lone /** {@inheritDoc} */ // comment drop the method altogether, // apparently if the method mentions an // parameter or return type of Vector<Double> // instead of Vector<E> as originally specified. // Adding an empty HTML fragment appears to // nudge javadoc into providing the desired // inherited documentation. We use the HTML // comment <!--workaround--> for this.
Returns a vector of the given species where all lane elements are set to zero, the default primitive value.
Params:
  • species – species of the desired zero vector
Returns:a zero vector
/** * Returns a vector of the given species * where all lane elements are set to * zero, the default primitive value. * * @param species species of the desired zero vector * @return a zero vector */
@ForceInline public static DoubleVector zero(VectorSpecies<Double> species) { DoubleSpecies vsp = (DoubleSpecies) species; return VectorSupport.broadcastCoerced(vsp.vectorType(), double.class, species.length(), toBits(0.0f), vsp, ((bits_, s_) -> s_.rvOp(i -> bits_))); }
Returns a vector of the same species as this one where all lane elements are set to the primitive value e. The contents of the current vector are discarded; only the species is relevant to this operation.

This method returns the value of this expression: DoubleVector.broadcast(this.species(), e).

Params:
  • e – the value to broadcast
See Also:
API Note: Unlike the similar method named broadcast() in the supertype Vector, this method does not need to validate its argument, and cannot throw IllegalArgumentException. This method is therefore preferable to the supertype method.
Returns:a vector where all lane elements are set to the primitive value e
/** * Returns a vector of the same species as this one * where all lane elements are set to * the primitive value {@code e}. * * The contents of the current vector are discarded; * only the species is relevant to this operation. * * <p> This method returns the value of this expression: * {@code DoubleVector.broadcast(this.species(), e)}. * * @apiNote * Unlike the similar method named {@code broadcast()} * in the supertype {@code Vector}, this method does not * need to validate its argument, and cannot throw * {@code IllegalArgumentException}. This method is * therefore preferable to the supertype method. * * @param e the value to broadcast * @return a vector where all lane elements are set to * the primitive value {@code e} * @see #broadcast(VectorSpecies,long) * @see Vector#broadcast(long) * @see VectorSpecies#broadcast(long) */
public abstract DoubleVector broadcast(double e);
Returns a vector of the given species where all lane elements are set to the primitive value e.
Params:
  • species – species of the desired vector
  • e – the value to broadcast
See Also:
Returns:a vector where all lane elements are set to the primitive value e
/** * Returns a vector of the given species * where all lane elements are set to * the primitive value {@code e}. * * @param species species of the desired vector * @param e the value to broadcast * @return a vector where all lane elements are set to * the primitive value {@code e} * @see #broadcast(long) * @see Vector#broadcast(long) * @see VectorSpecies#broadcast(long) */
@ForceInline public static DoubleVector broadcast(VectorSpecies<Double> species, double e) { DoubleSpecies vsp = (DoubleSpecies) species; return vsp.broadcast(e); } /*package-private*/ @ForceInline final DoubleVector broadcastTemplate(double e) { DoubleSpecies vsp = vspecies(); return vsp.broadcast(e); }
{@inheritDoc}
API Note: When working with vector subtypes like DoubleVector, the more strongly typed method is typically selected. It can be explicitly selected using a cast: v.broadcast((double)e). The two expressions will produce numerically identical results.
/** * {@inheritDoc} <!--workaround--> * @apiNote * When working with vector subtypes like {@code DoubleVector}, * {@linkplain #broadcast(double) the more strongly typed method} * is typically selected. It can be explicitly selected * using a cast: {@code v.broadcast((double)e)}. * The two expressions will produce numerically identical results. */
@Override public abstract DoubleVector broadcast(long e);
Returns a vector of the given species where all lane elements are set to the primitive value e. The long value must be accurately representable by the ETYPE of the vector species, so that e==(long)(ETYPE)e.
Params:
  • species – species of the desired vector
  • e – the value to broadcast
Throws:
See Also:
Returns:a vector where all lane elements are set to the primitive value e
/** * Returns a vector of the given species * where all lane elements are set to * the primitive value {@code e}. * * The {@code long} value must be accurately representable * by the {@code ETYPE} of the vector species, so that * {@code e==(long)(ETYPE)e}. * * @param species species of the desired vector * @param e the value to broadcast * @return a vector where all lane elements are set to * the primitive value {@code e} * @throws IllegalArgumentException * if the given {@code long} value cannot * be represented by the vector's {@code ETYPE} * @see #broadcast(VectorSpecies,double) * @see VectorSpecies#checkValue(long) */
@ForceInline public static DoubleVector broadcast(VectorSpecies<Double> species, long e) { DoubleSpecies vsp = (DoubleSpecies) species; return vsp.broadcast(e); } /*package-private*/ @ForceInline final DoubleVector broadcastTemplate(long e) { return vspecies().broadcast(e); } // Unary lanewise support
{@inheritDoc}
/** * {@inheritDoc} <!--workaround--> */
public abstract DoubleVector lanewise(VectorOperators.Unary op); @ForceInline final DoubleVector lanewiseTemplate(VectorOperators.Unary op) { if (opKind(op, VO_SPECIAL)) { if (op == ZOMO) { return blend(broadcast(-1), compare(NE, 0)); } if (op == SIN) { return uOp((i, a) -> (double) Math.sin(a)); } else if (op == COS) { return uOp((i, a) -> (double) Math.cos(a)); } else if (op == TAN) { return uOp((i, a) -> (double) Math.tan(a)); } else if (op == ASIN) { return uOp((i, a) -> (double) Math.asin(a)); } else if (op == ACOS) { return uOp((i, a) -> (double) Math.acos(a)); } else if (op == ATAN) { return uOp((i, a) -> (double) Math.atan(a)); } else if (op == EXP) { return uOp((i, a) -> (double) Math.exp(a)); } else if (op == LOG) { return uOp((i, a) -> (double) Math.log(a)); } else if (op == LOG10) { return uOp((i, a) -> (double) Math.log10(a)); } else if (op == CBRT) { return uOp((i, a) -> (double) Math.cbrt(a)); } else if (op == SINH) { return uOp((i, a) -> (double) Math.sinh(a)); } else if (op == COSH) { return uOp((i, a) -> (double) Math.cosh(a)); } else if (op == TANH) { return uOp((i, a) -> (double) Math.tanh(a)); } else if (op == EXPM1) { return uOp((i, a) -> (double) Math.expm1(a)); } else if (op == LOG1P) { return uOp((i, a) -> (double) Math.log1p(a)); } } int opc = opCode(op); return VectorSupport.unaryOp( opc, getClass(), double.class, length(), this, UN_IMPL.find(op, opc, (opc_) -> { switch (opc_) { case VECTOR_OP_NEG: return v0 -> v0.uOp((i, a) -> (double) -a); case VECTOR_OP_ABS: return v0 -> v0.uOp((i, a) -> (double) Math.abs(a)); case VECTOR_OP_SQRT: return v0 -> v0.uOp((i, a) -> (double) Math.sqrt(a)); default: return null; }})); } private static final ImplCache<Unary,UnaryOperator<DoubleVector>> UN_IMPL = new ImplCache<>(Unary.class, DoubleVector.class);
{@inheritDoc}
/** * {@inheritDoc} <!--workaround--> */
@ForceInline public final DoubleVector lanewise(VectorOperators.Unary op, VectorMask<Double> m) { return blend(lanewise(op), m); } // Binary lanewise support
{@inheritDoc}
See Also:
/** * {@inheritDoc} <!--workaround--> * @see #lanewise(VectorOperators.Binary,double) * @see #lanewise(VectorOperators.Binary,double,VectorMask) */
@Override public abstract DoubleVector lanewise(VectorOperators.Binary op, Vector<Double> v); @ForceInline final DoubleVector lanewiseTemplate(VectorOperators.Binary op, Vector<Double> v) { DoubleVector that = (DoubleVector) v; that.check(this); if (opKind(op, VO_SPECIAL )) { if (op == FIRST_NONZERO) { // FIXME: Support this in the JIT. VectorMask<Long> thisNZ = this.viewAsIntegralLanes().compare(NE, (long) 0); that = that.blend((double) 0, thisNZ.cast(vspecies())); op = OR_UNCHECKED; // FIXME: Support OR_UNCHECKED on float/double also! return this.viewAsIntegralLanes() .lanewise(op, that.viewAsIntegralLanes()) .viewAsFloatingLanes(); } if (op == ATAN2) { return bOp(that, (i, a, b) -> (double) Math.atan2(a, b)); } else if (op == POW) { return bOp(that, (i, a, b) -> (double) Math.pow(a, b)); } else if (op == HYPOT) { return bOp(that, (i, a, b) -> (double) Math.hypot(a, b)); } } int opc = opCode(op); return VectorSupport.binaryOp( opc, getClass(), double.class, length(), this, that, BIN_IMPL.find(op, opc, (opc_) -> { switch (opc_) { case VECTOR_OP_ADD: return (v0, v1) -> v0.bOp(v1, (i, a, b) -> (double)(a + b)); case VECTOR_OP_SUB: return (v0, v1) -> v0.bOp(v1, (i, a, b) -> (double)(a - b)); case VECTOR_OP_MUL: return (v0, v1) -> v0.bOp(v1, (i, a, b) -> (double)(a * b)); case VECTOR_OP_DIV: return (v0, v1) -> v0.bOp(v1, (i, a, b) -> (double)(a / b)); case VECTOR_OP_MAX: return (v0, v1) -> v0.bOp(v1, (i, a, b) -> (double)Math.max(a, b)); case VECTOR_OP_MIN: return (v0, v1) -> v0.bOp(v1, (i, a, b) -> (double)Math.min(a, b)); default: return null; }})); } private static final ImplCache<Binary,BinaryOperator<DoubleVector>> BIN_IMPL = new ImplCache<>(Binary.class, DoubleVector.class);
{@inheritDoc}
See Also:
/** * {@inheritDoc} <!--workaround--> * @see #lanewise(VectorOperators.Binary,double,VectorMask) */
@ForceInline public final DoubleVector lanewise(VectorOperators.Binary op, Vector<Double> v, VectorMask<Double> m) { return blend(lanewise(op, v), m); } // FIXME: Maybe all of the public final methods in this file (the // simple ones that just call lanewise) should be pushed down to // the X-VectorBits template. They can't optimize properly at // this level, and must rely on inlining. Does it work? // (If it works, of course keep the code here.)
Combines the lane values of this vector with the value of a broadcast scalar. This is a lane-wise binary operation which applies the selected operation to each lane. The return value will be equal to this expression: this.lanewise(op, this.broadcast(e)).
Params:
  • op – the operation used to process lane values
  • e – the input scalar
Throws:
See Also:
Returns:the result of applying the operation lane-wise to the two input vectors
/** * Combines the lane values of this vector * with the value of a broadcast scalar. * * This is a lane-wise binary operation which applies * the selected operation to each lane. * The return value will be equal to this expression: * {@code this.lanewise(op, this.broadcast(e))}. * * @param op the operation used to process lane values * @param e the input scalar * @return the result of applying the operation lane-wise * to the two input vectors * @throws UnsupportedOperationException if this vector does * not support the requested operation * @see #lanewise(VectorOperators.Binary,Vector) * @see #lanewise(VectorOperators.Binary,double,VectorMask) */
@ForceInline public final DoubleVector lanewise(VectorOperators.Binary op, double e) { return lanewise(op, broadcast(e)); }
Combines the lane values of this vector with the value of a broadcast scalar, with selection of lane elements controlled by a mask. This is a masked lane-wise binary operation which applies the selected operation to each lane. The return value will be equal to this expression: this.lanewise(op, this.broadcast(e), m).
Params:
  • op – the operation used to process lane values
  • e – the input scalar
  • m – the mask controlling lane selection
Throws:
See Also:
Returns:the result of applying the operation lane-wise to the input vector and the scalar
/** * Combines the lane values of this vector * with the value of a broadcast scalar, * with selection of lane elements controlled by a mask. * * This is a masked lane-wise binary operation which applies * the selected operation to each lane. * The return value will be equal to this expression: * {@code this.lanewise(op, this.broadcast(e), m)}. * * @param op the operation used to process lane values * @param e the input scalar * @param m the mask controlling lane selection * @return the result of applying the operation lane-wise * to the input vector and the scalar * @throws UnsupportedOperationException if this vector does * not support the requested operation * @see #lanewise(VectorOperators.Binary,Vector,VectorMask) * @see #lanewise(VectorOperators.Binary,double) */
@ForceInline public final DoubleVector lanewise(VectorOperators.Binary op, double e, VectorMask<Double> m) { return blend(lanewise(op, e), m); }
{@inheritDoc}
API Note: When working with vector subtypes like DoubleVector, the more strongly typed method is typically selected. It can be explicitly selected using a cast: v.lanewise(op,(double)e). The two expressions will produce numerically identical results.
/** * {@inheritDoc} <!--workaround--> * @apiNote * When working with vector subtypes like {@code DoubleVector}, * {@linkplain #lanewise(VectorOperators.Binary,double) * the more strongly typed method} * is typically selected. It can be explicitly selected * using a cast: {@code v.lanewise(op,(double)e)}. * The two expressions will produce numerically identical results. */
@ForceInline public final DoubleVector lanewise(VectorOperators.Binary op, long e) { double e1 = (double) e; if ((long)e1 != e ) { vspecies().checkValue(e); // for exception } return lanewise(op, e1); }
{@inheritDoc}
API Note: When working with vector subtypes like DoubleVector, the more strongly typed method is typically selected. It can be explicitly selected using a cast: v.lanewise(op,(double)e,m). The two expressions will produce numerically identical results.
/** * {@inheritDoc} <!--workaround--> * @apiNote * When working with vector subtypes like {@code DoubleVector}, * {@linkplain #lanewise(VectorOperators.Binary,double,VectorMask) * the more strongly typed method} * is typically selected. It can be explicitly selected * using a cast: {@code v.lanewise(op,(double)e,m)}. * The two expressions will produce numerically identical results. */
@ForceInline public final DoubleVector lanewise(VectorOperators.Binary op, long e, VectorMask<Double> m) { return blend(lanewise(op, e), m); } // Ternary lanewise support // Ternary operators come in eight variations: // lanewise(op, [broadcast(e1)|v1], [broadcast(e2)|v2]) // lanewise(op, [broadcast(e1)|v1], [broadcast(e2)|v2], mask) // It is annoying to support all of these variations of masking // and broadcast, but it would be more surprising not to continue // the obvious pattern started by unary and binary.
{@inheritDoc}
See Also:
/** * {@inheritDoc} <!--workaround--> * @see #lanewise(VectorOperators.Ternary,double,double,VectorMask) * @see #lanewise(VectorOperators.Ternary,Vector,double,VectorMask) * @see #lanewise(VectorOperators.Ternary,double,Vector,VectorMask) * @see #lanewise(VectorOperators.Ternary,double,double) * @see #lanewise(VectorOperators.Ternary,Vector,double) * @see #lanewise(VectorOperators.Ternary,double,Vector) */
@Override public abstract DoubleVector lanewise(VectorOperators.Ternary op, Vector<Double> v1, Vector<Double> v2); @ForceInline final DoubleVector lanewiseTemplate(VectorOperators.Ternary op, Vector<Double> v1, Vector<Double> v2) { DoubleVector that = (DoubleVector) v1; DoubleVector tother = (DoubleVector) v2; // It's a word: https://www.dictionary.com/browse/tother // See also Chapter 11 of Dickens, Our Mutual Friend: // "Totherest Governor," replied Mr Riderhood... that.check(this); tother.check(this); int opc = opCode(op); return VectorSupport.ternaryOp( opc, getClass(), double.class, length(), this, that, tother, TERN_IMPL.find(op, opc, (opc_) -> { switch (opc_) { case VECTOR_OP_FMA: return (v0, v1_, v2_) -> v0.tOp(v1_, v2_, (i, a, b, c) -> Math.fma(a, b, c)); default: return null; }})); } private static final ImplCache<Ternary,TernaryOperation<DoubleVector>> TERN_IMPL = new ImplCache<>(Ternary.class, DoubleVector.class);
{@inheritDoc}
See Also:
/** * {@inheritDoc} <!--workaround--> * @see #lanewise(VectorOperators.Ternary,double,double,VectorMask) * @see #lanewise(VectorOperators.Ternary,Vector,double,VectorMask) * @see #lanewise(VectorOperators.Ternary,double,Vector,VectorMask) */
@ForceInline public final DoubleVector lanewise(VectorOperators.Ternary op, Vector<Double> v1, Vector<Double> v2, VectorMask<Double> m) { return blend(lanewise(op, v1, v2), m); }
Combines the lane values of this vector with the values of two broadcast scalars. This is a lane-wise ternary operation which applies the selected operation to each lane. The return value will be equal to this expression: this.lanewise(op, this.broadcast(e1), this.broadcast(e2)).
Params:
  • op – the operation used to combine lane values
  • e1 – the first input scalar
  • e2 – the second input scalar
Throws:
See Also:
Returns:the result of applying the operation lane-wise to the input vector and the scalars
/** * Combines the lane values of this vector * with the values of two broadcast scalars. * * This is a lane-wise ternary operation which applies * the selected operation to each lane. * The return value will be equal to this expression: * {@code this.lanewise(op, this.broadcast(e1), this.broadcast(e2))}. * * @param op the operation used to combine lane values * @param e1 the first input scalar * @param e2 the second input scalar * @return the result of applying the operation lane-wise * to the input vector and the scalars * @throws UnsupportedOperationException if this vector does * not support the requested operation * @see #lanewise(VectorOperators.Ternary,Vector,Vector) * @see #lanewise(VectorOperators.Ternary,double,double,VectorMask) */
@ForceInline public final DoubleVector lanewise(VectorOperators.Ternary op, //(op,e1,e2) double e1, double e2) { return lanewise(op, broadcast(e1), broadcast(e2)); }
Combines the lane values of this vector with the values of two broadcast scalars, with selection of lane elements controlled by a mask. This is a masked lane-wise ternary operation which applies the selected operation to each lane. The return value will be equal to this expression: this.lanewise(op, this.broadcast(e1), this.broadcast(e2), m).
Params:
  • op – the operation used to combine lane values
  • e1 – the first input scalar
  • e2 – the second input scalar
  • m – the mask controlling lane selection
Throws:
See Also:
Returns:the result of applying the operation lane-wise to the input vector and the scalars
/** * Combines the lane values of this vector * with the values of two broadcast scalars, * with selection of lane elements controlled by a mask. * * This is a masked lane-wise ternary operation which applies * the selected operation to each lane. * The return value will be equal to this expression: * {@code this.lanewise(op, this.broadcast(e1), this.broadcast(e2), m)}. * * @param op the operation used to combine lane values * @param e1 the first input scalar * @param e2 the second input scalar * @param m the mask controlling lane selection * @return the result of applying the operation lane-wise * to the input vector and the scalars * @throws UnsupportedOperationException if this vector does * not support the requested operation * @see #lanewise(VectorOperators.Ternary,Vector,Vector,VectorMask) * @see #lanewise(VectorOperators.Ternary,double,double) */
@ForceInline public final DoubleVector lanewise(VectorOperators.Ternary op, //(op,e1,e2,m) double e1, double e2, VectorMask<Double> m) { return blend(lanewise(op, e1, e2), m); }
Combines the lane values of this vector with the values of another vector and a broadcast scalar. This is a lane-wise ternary operation which applies the selected operation to each lane. The return value will be equal to this expression: this.lanewise(op, v1, this.broadcast(e2)).
Params:
  • op – the operation used to combine lane values
  • v1 – the other input vector
  • e2 – the input scalar
Throws:
See Also:
Returns:the result of applying the operation lane-wise to the input vectors and the scalar
/** * Combines the lane values of this vector * with the values of another vector and a broadcast scalar. * * This is a lane-wise ternary operation which applies * the selected operation to each lane. * The return value will be equal to this expression: * {@code this.lanewise(op, v1, this.broadcast(e2))}. * * @param op the operation used to combine lane values * @param v1 the other input vector * @param e2 the input scalar * @return the result of applying the operation lane-wise * to the input vectors and the scalar * @throws UnsupportedOperationException if this vector does * not support the requested operation * @see #lanewise(VectorOperators.Ternary,double,double) * @see #lanewise(VectorOperators.Ternary,Vector,double,VectorMask) */
@ForceInline public final DoubleVector lanewise(VectorOperators.Ternary op, //(op,v1,e2) Vector<Double> v1, double e2) { return lanewise(op, v1, broadcast(e2)); }
Combines the lane values of this vector with the values of another vector and a broadcast scalar, with selection of lane elements controlled by a mask. This is a masked lane-wise ternary operation which applies the selected operation to each lane. The return value will be equal to this expression: this.lanewise(op, v1, this.broadcast(e2), m).
Params:
  • op – the operation used to combine lane values
  • v1 – the other input vector
  • e2 – the input scalar
  • m – the mask controlling lane selection
Throws:
See Also:
Returns:the result of applying the operation lane-wise to the input vectors and the scalar
/** * Combines the lane values of this vector * with the values of another vector and a broadcast scalar, * with selection of lane elements controlled by a mask. * * This is a masked lane-wise ternary operation which applies * the selected operation to each lane. * The return value will be equal to this expression: * {@code this.lanewise(op, v1, this.broadcast(e2), m)}. * * @param op the operation used to combine lane values * @param v1 the other input vector * @param e2 the input scalar * @param m the mask controlling lane selection * @return the result of applying the operation lane-wise * to the input vectors and the scalar * @throws UnsupportedOperationException if this vector does * not support the requested operation * @see #lanewise(VectorOperators.Ternary,Vector,Vector) * @see #lanewise(VectorOperators.Ternary,double,double,VectorMask) * @see #lanewise(VectorOperators.Ternary,Vector,double) */
@ForceInline public final DoubleVector lanewise(VectorOperators.Ternary op, //(op,v1,e2,m) Vector<Double> v1, double e2, VectorMask<Double> m) { return blend(lanewise(op, v1, e2), m); }
Combines the lane values of this vector with the values of another vector and a broadcast scalar. This is a lane-wise ternary operation which applies the selected operation to each lane. The return value will be equal to this expression: this.lanewise(op, this.broadcast(e1), v2).
Params:
  • op – the operation used to combine lane values
  • e1 – the input scalar
  • v2 – the other input vector
Throws:
See Also:
Returns:the result of applying the operation lane-wise to the input vectors and the scalar
/** * Combines the lane values of this vector * with the values of another vector and a broadcast scalar. * * This is a lane-wise ternary operation which applies * the selected operation to each lane. * The return value will be equal to this expression: * {@code this.lanewise(op, this.broadcast(e1), v2)}. * * @param op the operation used to combine lane values * @param e1 the input scalar * @param v2 the other input vector * @return the result of applying the operation lane-wise * to the input vectors and the scalar * @throws UnsupportedOperationException if this vector does * not support the requested operation * @see #lanewise(VectorOperators.Ternary,Vector,Vector) * @see #lanewise(VectorOperators.Ternary,double,Vector,VectorMask) */
@ForceInline public final DoubleVector lanewise(VectorOperators.Ternary op, //(op,e1,v2) double e1, Vector<Double> v2) { return lanewise(op, broadcast(e1), v2); }
Combines the lane values of this vector with the values of another vector and a broadcast scalar, with selection of lane elements controlled by a mask. This is a masked lane-wise ternary operation which applies the selected operation to each lane. The return value will be equal to this expression: this.lanewise(op, this.broadcast(e1), v2, m).
Params:
  • op – the operation used to combine lane values
  • e1 – the input scalar
  • v2 – the other input vector
  • m – the mask controlling lane selection
Throws:
See Also:
Returns:the result of applying the operation lane-wise to the input vectors and the scalar
/** * Combines the lane values of this vector * with the values of another vector and a broadcast scalar, * with selection of lane elements controlled by a mask. * * This is a masked lane-wise ternary operation which applies * the selected operation to each lane. * The return value will be equal to this expression: * {@code this.lanewise(op, this.broadcast(e1), v2, m)}. * * @param op the operation used to combine lane values * @param e1 the input scalar * @param v2 the other input vector * @param m the mask controlling lane selection * @return the result of applying the operation lane-wise * to the input vectors and the scalar * @throws UnsupportedOperationException if this vector does * not support the requested operation * @see #lanewise(VectorOperators.Ternary,Vector,Vector,VectorMask) * @see #lanewise(VectorOperators.Ternary,double,Vector) */
@ForceInline public final DoubleVector lanewise(VectorOperators.Ternary op, //(op,e1,v2,m) double e1, Vector<Double> v2, VectorMask<Double> m) { return blend(lanewise(op, e1, v2), m); } // (Thus endeth the Great and Mighty Ternary Ogdoad.) // https://en.wikipedia.org/wiki/Ogdoad /// FULL-SERVICE BINARY METHODS: ADD, SUB, MUL, DIV // // These include masked and non-masked versions. // This subclass adds broadcast (masked or not).
{@inheritDoc}
See Also:
/** * {@inheritDoc} <!--workaround--> * @see #add(double) */
@Override @ForceInline public final DoubleVector add(Vector<Double> v) { return lanewise(ADD, v); }
Adds this vector to the broadcast of an input scalar. This is a lane-wise binary operation which applies the primitive addition operation (+) to each lane. This method is also equivalent to the expression lanewise( ADD, e).
Params:
  • e – the input scalar
See Also:
Returns:the result of adding each lane of this vector to the scalar
/** * Adds this vector to the broadcast of an input scalar. * * This is a lane-wise binary operation which applies * the primitive addition operation ({@code +}) to each lane. * * This method is also equivalent to the expression * {@link #lanewise(VectorOperators.Binary,double) * lanewise}{@code (}{@link VectorOperators#ADD * ADD}{@code , e)}. * * @param e the input scalar * @return the result of adding each lane of this vector to the scalar * @see #add(Vector) * @see #broadcast(double) * @see #add(double,VectorMask) * @see VectorOperators#ADD * @see #lanewise(VectorOperators.Binary,Vector) * @see #lanewise(VectorOperators.Binary,double) */
@ForceInline public final DoubleVector add(double e) { return lanewise(ADD, e); }
{@inheritDoc}
See Also:
/** * {@inheritDoc} <!--workaround--> * @see #add(double,VectorMask) */
@Override @ForceInline public final DoubleVector add(Vector<Double> v, VectorMask<Double> m) { return lanewise(ADD, v, m); }
Adds this vector to the broadcast of an input scalar, selecting lane elements controlled by a mask. This is a masked lane-wise binary operation which applies the primitive addition operation (+) to each lane. This method is also equivalent to the expression lanewise( ADD, s, m).
Params:
  • e – the input scalar
  • m – the mask controlling lane selection
See Also:
Returns:the result of adding each lane of this vector to the scalar
/** * Adds this vector to the broadcast of an input scalar, * selecting lane elements controlled by a mask. * * This is a masked lane-wise binary operation which applies * the primitive addition operation ({@code +}) to each lane. * * This method is also equivalent to the expression * {@link #lanewise(VectorOperators.Binary,double,VectorMask) * lanewise}{@code (}{@link VectorOperators#ADD * ADD}{@code , s, m)}. * * @param e the input scalar * @param m the mask controlling lane selection * @return the result of adding each lane of this vector to the scalar * @see #add(Vector,VectorMask) * @see #broadcast(double) * @see #add(double) * @see VectorOperators#ADD * @see #lanewise(VectorOperators.Binary,Vector) * @see #lanewise(VectorOperators.Binary,double) */
@ForceInline public final DoubleVector add(double e, VectorMask<Double> m) { return lanewise(ADD, e, m); }
{@inheritDoc}
See Also:
/** * {@inheritDoc} <!--workaround--> * @see #sub(double) */
@Override @ForceInline public final DoubleVector sub(Vector<Double> v) { return lanewise(SUB, v); }
Subtracts an input scalar from this vector. This is a masked lane-wise binary operation which applies the primitive subtraction operation (-) to each lane. This method is also equivalent to the expression lanewise( SUB, e).
Params:
  • e – the input scalar
See Also:
Returns:the result of subtracting the scalar from each lane of this vector
/** * Subtracts an input scalar from this vector. * * This is a masked lane-wise binary operation which applies * the primitive subtraction operation ({@code -}) to each lane. * * This method is also equivalent to the expression * {@link #lanewise(VectorOperators.Binary,double) * lanewise}{@code (}{@link VectorOperators#SUB * SUB}{@code , e)}. * * @param e the input scalar * @return the result of subtracting the scalar from each lane of this vector * @see #sub(Vector) * @see #broadcast(double) * @see #sub(double,VectorMask) * @see VectorOperators#SUB * @see #lanewise(VectorOperators.Binary,Vector) * @see #lanewise(VectorOperators.Binary,double) */
@ForceInline public final DoubleVector sub(double e) { return lanewise(SUB, e); }
{@inheritDoc}
See Also:
/** * {@inheritDoc} <!--workaround--> * @see #sub(double,VectorMask) */
@Override @ForceInline public final DoubleVector sub(Vector<Double> v, VectorMask<Double> m) { return lanewise(SUB, v, m); }
Subtracts an input scalar from this vector under the control of a mask. This is a masked lane-wise binary operation which applies the primitive subtraction operation (-) to each lane. This method is also equivalent to the expression lanewise( SUB, s, m).
Params:
  • e – the input scalar
  • m – the mask controlling lane selection
See Also:
Returns:the result of subtracting the scalar from each lane of this vector
/** * Subtracts an input scalar from this vector * under the control of a mask. * * This is a masked lane-wise binary operation which applies * the primitive subtraction operation ({@code -}) to each lane. * * This method is also equivalent to the expression * {@link #lanewise(VectorOperators.Binary,double,VectorMask) * lanewise}{@code (}{@link VectorOperators#SUB * SUB}{@code , s, m)}. * * @param e the input scalar * @param m the mask controlling lane selection * @return the result of subtracting the scalar from each lane of this vector * @see #sub(Vector,VectorMask) * @see #broadcast(double) * @see #sub(double) * @see VectorOperators#SUB * @see #lanewise(VectorOperators.Binary,Vector) * @see #lanewise(VectorOperators.Binary,double) */
@ForceInline public final DoubleVector sub(double e, VectorMask<Double> m) { return lanewise(SUB, e, m); }
{@inheritDoc}
See Also:
/** * {@inheritDoc} <!--workaround--> * @see #mul(double) */
@Override @ForceInline public final DoubleVector mul(Vector<Double> v) { return lanewise(MUL, v); }
Multiplies this vector by the broadcast of an input scalar. This is a lane-wise binary operation which applies the primitive multiplication operation (*) to each lane. This method is also equivalent to the expression lanewise( MUL, e).
Params:
  • e – the input scalar
See Also:
Returns:the result of multiplying this vector by the given scalar
/** * Multiplies this vector by the broadcast of an input scalar. * * This is a lane-wise binary operation which applies * the primitive multiplication operation ({@code *}) to each lane. * * This method is also equivalent to the expression * {@link #lanewise(VectorOperators.Binary,double) * lanewise}{@code (}{@link VectorOperators#MUL * MUL}{@code , e)}. * * @param e the input scalar * @return the result of multiplying this vector by the given scalar * @see #mul(Vector) * @see #broadcast(double) * @see #mul(double,VectorMask) * @see VectorOperators#MUL * @see #lanewise(VectorOperators.Binary,Vector) * @see #lanewise(VectorOperators.Binary,double) */
@ForceInline public final DoubleVector mul(double e) { return lanewise(MUL, e); }
{@inheritDoc}
See Also:
/** * {@inheritDoc} <!--workaround--> * @see #mul(double,VectorMask) */
@Override @ForceInline public final DoubleVector mul(Vector<Double> v, VectorMask<Double> m) { return lanewise(MUL, v, m); }
Multiplies this vector by the broadcast of an input scalar, selecting lane elements controlled by a mask. This is a masked lane-wise binary operation which applies the primitive multiplication operation (*) to each lane. This method is also equivalent to the expression lanewise( MUL, s, m).
Params:
  • e – the input scalar
  • m – the mask controlling lane selection
See Also:
Returns:the result of muling each lane of this vector to the scalar
/** * Multiplies this vector by the broadcast of an input scalar, * selecting lane elements controlled by a mask. * * This is a masked lane-wise binary operation which applies * the primitive multiplication operation ({@code *}) to each lane. * * This method is also equivalent to the expression * {@link #lanewise(VectorOperators.Binary,double,VectorMask) * lanewise}{@code (}{@link VectorOperators#MUL * MUL}{@code , s, m)}. * * @param e the input scalar * @param m the mask controlling lane selection * @return the result of muling each lane of this vector to the scalar * @see #mul(Vector,VectorMask) * @see #broadcast(double) * @see #mul(double) * @see VectorOperators#MUL * @see #lanewise(VectorOperators.Binary,Vector) * @see #lanewise(VectorOperators.Binary,double) */
@ForceInline public final DoubleVector mul(double e, VectorMask<Double> m) { return lanewise(MUL, e, m); }
{@inheritDoc}
API Note:Because the underlying scalar operator is an IEEE floating point number, division by zero in fact will not throw an exception, but will yield a signed infinity or NaN.
/** * {@inheritDoc} <!--workaround--> * @apiNote Because the underlying scalar operator is an IEEE * floating point number, division by zero in fact will * not throw an exception, but will yield a signed * infinity or NaN. */
@Override @ForceInline public final DoubleVector div(Vector<Double> v) { return lanewise(DIV, v); }
Divides this vector by the broadcast of an input scalar. This is a lane-wise binary operation which applies the primitive division operation (/) to each lane. This method is also equivalent to the expression lanewise( DIV, e).
Params:
  • e – the input scalar
See Also:
API Note:Because the underlying scalar operator is an IEEE floating point number, division by zero in fact will not throw an exception, but will yield a signed infinity or NaN.
Returns:the result of dividing each lane of this vector by the scalar
/** * Divides this vector by the broadcast of an input scalar. * * This is a lane-wise binary operation which applies * the primitive division operation ({@code /}) to each lane. * * This method is also equivalent to the expression * {@link #lanewise(VectorOperators.Binary,double) * lanewise}{@code (}{@link VectorOperators#DIV * DIV}{@code , e)}. * * @apiNote Because the underlying scalar operator is an IEEE * floating point number, division by zero in fact will * not throw an exception, but will yield a signed * infinity or NaN. * * @param e the input scalar * @return the result of dividing each lane of this vector by the scalar * @see #div(Vector) * @see #broadcast(double) * @see #div(double,VectorMask) * @see VectorOperators#DIV * @see #lanewise(VectorOperators.Binary,Vector) * @see #lanewise(VectorOperators.Binary,double) */
@ForceInline public final DoubleVector div(double e) { return lanewise(DIV, e); }
{@inheritDoc}
See Also:
API Note:Because the underlying scalar operator is an IEEE floating point number, division by zero in fact will not throw an exception, but will yield a signed infinity or NaN.
/** * {@inheritDoc} <!--workaround--> * @see #div(double,VectorMask) * @apiNote Because the underlying scalar operator is an IEEE * floating point number, division by zero in fact will * not throw an exception, but will yield a signed * infinity or NaN. */
@Override @ForceInline public final DoubleVector div(Vector<Double> v, VectorMask<Double> m) { return lanewise(DIV, v, m); }
Divides this vector by the broadcast of an input scalar, selecting lane elements controlled by a mask. This is a masked lane-wise binary operation which applies the primitive division operation (/) to each lane. This method is also equivalent to the expression lanewise( DIV, s, m).
Params:
  • e – the input scalar
  • m – the mask controlling lane selection
See Also:
API Note:Because the underlying scalar operator is an IEEE floating point number, division by zero in fact will not throw an exception, but will yield a signed infinity or NaN.
Returns:the result of dividing each lane of this vector by the scalar
/** * Divides this vector by the broadcast of an input scalar, * selecting lane elements controlled by a mask. * * This is a masked lane-wise binary operation which applies * the primitive division operation ({@code /}) to each lane. * * This method is also equivalent to the expression * {@link #lanewise(VectorOperators.Binary,double,VectorMask) * lanewise}{@code (}{@link VectorOperators#DIV * DIV}{@code , s, m)}. * * @apiNote Because the underlying scalar operator is an IEEE * floating point number, division by zero in fact will * not throw an exception, but will yield a signed * infinity or NaN. * * @param e the input scalar * @param m the mask controlling lane selection * @return the result of dividing each lane of this vector by the scalar * @see #div(Vector,VectorMask) * @see #broadcast(double) * @see #div(double) * @see VectorOperators#DIV * @see #lanewise(VectorOperators.Binary,Vector) * @see #lanewise(VectorOperators.Binary,double) */
@ForceInline public final DoubleVector div(double e, VectorMask<Double> m) { return lanewise(DIV, e, m); } /// END OF FULL-SERVICE BINARY METHODS /// SECOND-TIER BINARY METHODS // // There are no masked versions.
{@inheritDoc}
API Note: For this method, floating point negative zero -0.0 is treated as a value distinct from, and less than the default value (positive zero).
/** * {@inheritDoc} <!--workaround--> * @apiNote * For this method, floating point negative * zero {@code -0.0} is treated as a value distinct from, and less * than the default value (positive zero). */
@Override @ForceInline public final DoubleVector min(Vector<Double> v) { return lanewise(MIN, v); } // FIXME: "broadcast of an input scalar" is really wordy. Reduce?
Computes the smaller of this vector and the broadcast of an input scalar. This is a lane-wise binary operation which applies the operation Math.min() to each pair of corresponding lane values. This method is also equivalent to the expression lanewise( MIN, e).
Params:
  • e – the input scalar
See Also:
Returns:the result of multiplying this vector by the given scalar
API Note: For this method, floating point negative zero -0.0 is treated as a value distinct from, and less than the default value (positive zero).
/** * Computes the smaller of this vector and the broadcast of an input scalar. * * This is a lane-wise binary operation which applies the * operation {@code Math.min()} to each pair of * corresponding lane values. * * This method is also equivalent to the expression * {@link #lanewise(VectorOperators.Binary,double) * lanewise}{@code (}{@link VectorOperators#MIN * MIN}{@code , e)}. * * @param e the input scalar * @return the result of multiplying this vector by the given scalar * @see #min(Vector) * @see #broadcast(double) * @see VectorOperators#MIN * @see #lanewise(VectorOperators.Binary,double,VectorMask) * @apiNote * For this method, floating point negative * zero {@code -0.0} is treated as a value distinct from, and less * than the default value (positive zero). */
@ForceInline public final DoubleVector min(double e) { return lanewise(MIN, e); }
{@inheritDoc}
API Note: For this method, floating point negative zero -0.0 is treated as a value distinct from, and less than the default value (positive zero).
/** * {@inheritDoc} <!--workaround--> * @apiNote * For this method, floating point negative * zero {@code -0.0} is treated as a value distinct from, and less * than the default value (positive zero). */
@Override @ForceInline public final DoubleVector max(Vector<Double> v) { return lanewise(MAX, v); }
Computes the larger of this vector and the broadcast of an input scalar. This is a lane-wise binary operation which applies the operation Math.max() to each pair of corresponding lane values. This method is also equivalent to the expression lanewise( MAX, e).
Params:
  • e – the input scalar
See Also:
Returns:the result of multiplying this vector by the given scalar
API Note: For this method, floating point negative zero -0.0 is treated as a value distinct from, and less than the default value (positive zero).
/** * Computes the larger of this vector and the broadcast of an input scalar. * * This is a lane-wise binary operation which applies the * operation {@code Math.max()} to each pair of * corresponding lane values. * * This method is also equivalent to the expression * {@link #lanewise(VectorOperators.Binary,double) * lanewise}{@code (}{@link VectorOperators#MAX * MAX}{@code , e)}. * * @param e the input scalar * @return the result of multiplying this vector by the given scalar * @see #max(Vector) * @see #broadcast(double) * @see VectorOperators#MAX * @see #lanewise(VectorOperators.Binary,double,VectorMask) * @apiNote * For this method, floating point negative * zero {@code -0.0} is treated as a value distinct from, and less * than the default value (positive zero). */
@ForceInline public final DoubleVector max(double e) { return lanewise(MAX, e); } // common FP operator: pow
Raises this vector to the power of a second input vector. This is a lane-wise binary operation which applies an operation conforming to the specification of Math.pow(a,b) to each pair of corresponding lane values. This method is also equivalent to the expression lanewise( POW, b).

This is not a full-service named operation like add. A masked version of this operation is not directly available but may be obtained via the masked version of lanewise.

Params:
  • b – a vector exponent by which to raise this vector
See Also:
Returns:the b-th power of this vector
/** * Raises this vector to the power of a second input vector. * * This is a lane-wise binary operation which applies an operation * conforming to the specification of * {@link Math#pow Math.pow(a,b)} * to each pair of corresponding lane values. * * This method is also equivalent to the expression * {@link #lanewise(VectorOperators.Binary,Vector) * lanewise}{@code (}{@link VectorOperators#POW * POW}{@code , b)}. * * <p> * This is not a full-service named operation like * {@link #add(Vector) add}. A masked version of * this operation is not directly available * but may be obtained via the masked version of * {@code lanewise}. * * @param b a vector exponent by which to raise this vector * @return the {@code b}-th power of this vector * @see #pow(double) * @see VectorOperators#POW * @see #lanewise(VectorOperators.Binary,Vector,VectorMask) */
@ForceInline public final DoubleVector pow(Vector<Double> b) { return lanewise(POW, b); }
Raises this vector to a scalar power. This is a lane-wise binary operation which applies an operation conforming to the specification of Math.pow(a,b) to each pair of corresponding lane values. This method is also equivalent to the expression lanewise( POW, b).
Params:
  • b – a scalar exponent by which to raise this vector
See Also:
Returns:the b-th power of this vector
/** * Raises this vector to a scalar power. * * This is a lane-wise binary operation which applies an operation * conforming to the specification of * {@link Math#pow Math.pow(a,b)} * to each pair of corresponding lane values. * * This method is also equivalent to the expression * {@link #lanewise(VectorOperators.Binary,Vector) * lanewise}{@code (}{@link VectorOperators#POW * POW}{@code , b)}. * * @param b a scalar exponent by which to raise this vector * @return the {@code b}-th power of this vector * @see #pow(Vector) * @see VectorOperators#POW * @see #lanewise(VectorOperators.Binary,double,VectorMask) */
@ForceInline public final DoubleVector pow(double b) { return lanewise(POW, b); } /// UNARY METHODS
{@inheritDoc}
/** * {@inheritDoc} <!--workaround--> */
@Override @ForceInline public final DoubleVector neg() { return lanewise(NEG); }
{@inheritDoc}
/** * {@inheritDoc} <!--workaround--> */
@Override @ForceInline public final DoubleVector abs() { return lanewise(ABS); } // sqrt
Computes the square root of this vector. This is a lane-wise unary operation which applies an operation conforming to the specification of Math.sqrt(a) to each lane value. This method is also equivalent to the expression lanewise( SQRT).
See Also:
Returns:the square root of this vector
/** * Computes the square root of this vector. * * This is a lane-wise unary operation which applies an operation * conforming to the specification of * {@link Math#sqrt Math.sqrt(a)} * to each lane value. * * This method is also equivalent to the expression * {@link #lanewise(VectorOperators.Unary) * lanewise}{@code (}{@link VectorOperators#SQRT * SQRT}{@code )}. * * @return the square root of this vector * @see VectorOperators#SQRT * @see #lanewise(VectorOperators.Unary,VectorMask) */
@ForceInline public final DoubleVector sqrt() { return lanewise(SQRT); } /// COMPARISONS
{@inheritDoc}
/** * {@inheritDoc} <!--workaround--> */
@Override @ForceInline public final VectorMask<Double> eq(Vector<Double> v) { return compare(EQ, v); }
Tests if this vector is equal to an input scalar. This is a lane-wise binary test operation which applies the primitive equals operation (==) to each lane. The result is the same as compare(VectorOperators.Comparison.EQ, e).
Params:
  • e – the input scalar
See Also:
Returns:the result mask of testing if this vector is equal to e
/** * Tests if this vector is equal to an input scalar. * * This is a lane-wise binary test operation which applies * the primitive equals operation ({@code ==}) to each lane. * The result is the same as {@code compare(VectorOperators.Comparison.EQ, e)}. * * @param e the input scalar * @return the result mask of testing if this vector * is equal to {@code e} * @see #compare(VectorOperators.Comparison,double) */
@ForceInline public final VectorMask<Double> eq(double e) { return compare(EQ, e); }
{@inheritDoc}
/** * {@inheritDoc} <!--workaround--> */
@Override @ForceInline public final VectorMask<Double> lt(Vector<Double> v) { return compare(LT, v); }
Tests if this vector is less than an input scalar. This is a lane-wise binary test operation which applies the primitive less than operation (<) to each lane. The result is the same as compare(VectorOperators.LT, e).
Params:
  • e – the input scalar
See Also:
Returns:the mask result of testing if this vector is less than the input scalar
/** * Tests if this vector is less than an input scalar. * * This is a lane-wise binary test operation which applies * the primitive less than operation ({@code <}) to each lane. * The result is the same as {@code compare(VectorOperators.LT, e)}. * * @param e the input scalar * @return the mask result of testing if this vector * is less than the input scalar * @see #compare(VectorOperators.Comparison,double) */
@ForceInline public final VectorMask<Double> lt(double e) { return compare(LT, e); }
{@inheritDoc}
/** * {@inheritDoc} <!--workaround--> */
@Override public abstract VectorMask<Double> test(VectorOperators.Test op); /*package-private*/ @ForceInline final <M extends VectorMask<Double>> M testTemplate(Class<M> maskType, Test op) { DoubleSpecies vsp = vspecies(); if (opKind(op, VO_SPECIAL)) { LongVector bits = this.viewAsIntegralLanes(); VectorMask<Long> m; if (op == IS_DEFAULT) { m = bits.compare(EQ, (long) 0); } else if (op == IS_NEGATIVE) { m = bits.compare(LT, (long) 0); } else if (op == IS_FINITE || op == IS_NAN || op == IS_INFINITE) { // first kill the sign: bits = bits.and(Long.MAX_VALUE); // next find the bit pattern for infinity: long infbits = (long) toBits(Double.POSITIVE_INFINITY); // now compare: if (op == IS_FINITE) { m = bits.compare(LT, infbits); } else if (op == IS_NAN) { m = bits.compare(GT, infbits); } else { m = bits.compare(EQ, infbits); } } else { throw new AssertionError(op); } return maskType.cast(m.cast(this.vspecies())); } int opc = opCode(op); throw new AssertionError(op); }
{@inheritDoc}
/** * {@inheritDoc} <!--workaround--> */
@Override @ForceInline public final VectorMask<Double> test(VectorOperators.Test op, VectorMask<Double> m) { return test(op).and(m); }
{@inheritDoc}
/** * {@inheritDoc} <!--workaround--> */
@Override public abstract VectorMask<Double> compare(VectorOperators.Comparison op, Vector<Double> v); /*package-private*/ @ForceInline final <M extends VectorMask<Double>> M compareTemplate(Class<M> maskType, Comparison op, Vector<Double> v) { Objects.requireNonNull(v); DoubleSpecies vsp = vspecies(); DoubleVector that = (DoubleVector) v; that.check(this); int opc = opCode(op); return VectorSupport.compare( opc, getClass(), maskType, double.class, length(), this, that, (cond, v0, v1) -> { AbstractMask<Double> m = v0.bTest(cond, v1, (cond_, i, a, b) -> compareWithOp(cond, a, b)); @SuppressWarnings("unchecked") M m2 = (M) m; return m2; }); } @ForceInline private static boolean compareWithOp(int cond, double a, double b) { switch (cond) { case BT_eq: return a == b; case BT_ne: return a != b; case BT_lt: return a < b; case BT_le: return a <= b; case BT_gt: return a > b; case BT_ge: return a >= b; } throw new AssertionError(); }
{@inheritDoc}
/** * {@inheritDoc} <!--workaround--> */
@Override @ForceInline public final VectorMask<Double> compare(VectorOperators.Comparison op, Vector<Double> v, VectorMask<Double> m) { return compare(op, v).and(m); }
Tests this vector by comparing it with an input scalar, according to the given comparison operation. This is a lane-wise binary test operation which applies the comparison operation to each lane.

The result is the same as compare(op, broadcast(species(), e)). That is, the scalar may be regarded as broadcast to a vector of the same species, and then compared against the original vector, using the selected comparison operation.

Params:
  • op – the operation used to compare lane values
  • e – the input scalar
See Also:
Returns:the mask result of testing lane-wise if this vector compares to the input, according to the selected comparison operator
/** * Tests this vector by comparing it with an input scalar, * according to the given comparison operation. * * This is a lane-wise binary test operation which applies * the comparison operation to each lane. * <p> * The result is the same as * {@code compare(op, broadcast(species(), e))}. * That is, the scalar may be regarded as broadcast to * a vector of the same species, and then compared * against the original vector, using the selected * comparison operation. * * @param op the operation used to compare lane values * @param e the input scalar * @return the mask result of testing lane-wise if this vector * compares to the input, according to the selected * comparison operator * @see DoubleVector#compare(VectorOperators.Comparison,Vector) * @see #eq(double) * @see #lt(double) */
public abstract VectorMask<Double> compare(Comparison op, double e); /*package-private*/ @ForceInline final <M extends VectorMask<Double>> M compareTemplate(Class<M> maskType, Comparison op, double e) { return compareTemplate(maskType, op, broadcast(e)); }
Tests this vector by comparing it with an input scalar, according to the given comparison operation, in lanes selected by a mask. This is a masked lane-wise binary test operation which applies to each pair of corresponding lane values. The returned result is equal to the expression compare(op,s).and(m).
Params:
  • op – the operation used to compare lane values
  • e – the input scalar
  • m – the mask controlling lane selection
See Also:
Returns:the mask result of testing lane-wise if this vector compares to the input, according to the selected comparison operator, and only in the lanes selected by the mask
/** * Tests this vector by comparing it with an input scalar, * according to the given comparison operation, * in lanes selected by a mask. * * This is a masked lane-wise binary test operation which applies * to each pair of corresponding lane values. * * The returned result is equal to the expression * {@code compare(op,s).and(m)}. * * @param op the operation used to compare lane values * @param e the input scalar * @param m the mask controlling lane selection * @return the mask result of testing lane-wise if this vector * compares to the input, according to the selected * comparison operator, * and only in the lanes selected by the mask * @see DoubleVector#compare(VectorOperators.Comparison,Vector,VectorMask) */
@ForceInline public final VectorMask<Double> compare(VectorOperators.Comparison op, double e, VectorMask<Double> m) { return compare(op, e).and(m); }
{@inheritDoc}
/** * {@inheritDoc} <!--workaround--> */
@Override public abstract VectorMask<Double> compare(Comparison op, long e); /*package-private*/ @ForceInline final <M extends VectorMask<Double>> M compareTemplate(Class<M> maskType, Comparison op, long e) { return compareTemplate(maskType, op, broadcast(e)); }
{@inheritDoc}
/** * {@inheritDoc} <!--workaround--> */
@Override @ForceInline public final VectorMask<Double> compare(Comparison op, long e, VectorMask<Double> m) { return compare(op, broadcast(e), m); }
{@inheritDoc}
/** * {@inheritDoc} <!--workaround--> */
@Override public abstract DoubleVector blend(Vector<Double> v, VectorMask<Double> m); /*package-private*/ @ForceInline final <M extends VectorMask<Double>> DoubleVector blendTemplate(Class<M> maskType, DoubleVector v, M m) { v.check(this); return VectorSupport.blend( getClass(), maskType, double.class, length(), this, v, m, (v0, v1, m_) -> v0.bOp(v1, m_, (i, a, b) -> b)); }
{@inheritDoc}
/** * {@inheritDoc} <!--workaround--> */
@Override public abstract DoubleVector addIndex(int scale); /*package-private*/ @ForceInline final DoubleVector addIndexTemplate(int scale) { DoubleSpecies vsp = vspecies(); // make sure VLENGTH*scale doesn't overflow: vsp.checkScale(scale); return VectorSupport.indexVector( getClass(), double.class, length(), this, scale, vsp, (v, scale_, s) -> { // If the platform doesn't support an INDEX // instruction directly, load IOTA from memory // and multiply. DoubleVector iota = s.iota(); double sc = (double) scale_; return v.add(sc == 1 ? iota : iota.mul(sc)); }); }
Replaces selected lanes of this vector with a scalar value under the control of a mask. This is a masked lane-wise binary operation which selects each lane value from one or the other input. The returned result is equal to the expression blend(broadcast(e),m).
Params:
  • e – the input scalar, containing the replacement lane value
  • m – the mask controlling lane selection of the scalar
Returns:the result of blending the lane elements of this vector with the scalar value
/** * Replaces selected lanes of this vector with * a scalar value * under the control of a mask. * * This is a masked lane-wise binary operation which * selects each lane value from one or the other input. * * The returned result is equal to the expression * {@code blend(broadcast(e),m)}. * * @param e the input scalar, containing the replacement lane value * @param m the mask controlling lane selection of the scalar * @return the result of blending the lane elements of this vector with * the scalar value */
@ForceInline public final DoubleVector blend(double e, VectorMask<Double> m) { return blend(broadcast(e), m); }
Replaces selected lanes of this vector with a scalar value under the control of a mask. This is a masked lane-wise binary operation which selects each lane value from one or the other input. The returned result is equal to the expression blend(broadcast(e),m).
Params:
  • e – the input scalar, containing the replacement lane value
  • m – the mask controlling lane selection of the scalar
Returns:the result of blending the lane elements of this vector with the scalar value
/** * Replaces selected lanes of this vector with * a scalar value * under the control of a mask. * * This is a masked lane-wise binary operation which * selects each lane value from one or the other input. * * The returned result is equal to the expression * {@code blend(broadcast(e),m)}. * * @param e the input scalar, containing the replacement lane value * @param m the mask controlling lane selection of the scalar * @return the result of blending the lane elements of this vector with * the scalar value */
@ForceInline public final DoubleVector blend(long e, VectorMask<Double> m) { return blend(broadcast(e), m); }
{@inheritDoc}
/** * {@inheritDoc} <!--workaround--> */
@Override public abstract DoubleVector slice(int origin, Vector<Double> v1); /*package-private*/ final @ForceInline DoubleVector sliceTemplate(int origin, Vector<Double> v1) { DoubleVector that = (DoubleVector) v1; that.check(this); double[] a0 = this.vec(); double[] a1 = that.vec(); double[] res = new double[a0.length]; int vlen = res.length; int firstPart = vlen - origin; System.arraycopy(a0, origin, res, 0, firstPart); System.arraycopy(a1, 0, res, firstPart, origin); return vectorFactory(res); }
{@inheritDoc}
/** * {@inheritDoc} <!--workaround--> */
@Override @ForceInline public final DoubleVector slice(int origin, Vector<Double> w, VectorMask<Double> m) { return broadcast(0).blend(slice(origin, w), m); }
{@inheritDoc}
/** * {@inheritDoc} <!--workaround--> */
@Override public abstract DoubleVector slice(int origin);
{@inheritDoc}
/** * {@inheritDoc} <!--workaround--> */
@Override public abstract DoubleVector unslice(int origin, Vector<Double> w, int part); /*package-private*/ final @ForceInline DoubleVector unsliceTemplate(int origin, Vector<Double> w, int part) { DoubleVector that = (DoubleVector) w; that.check(this); double[] slice = this.vec(); double[] res = that.vec().clone(); int vlen = res.length; int firstPart = vlen - origin; switch (part) { case 0: System.arraycopy(slice, 0, res, origin, firstPart); break; case 1: System.arraycopy(slice, firstPart, res, 0, origin); break; default: throw wrongPartForSlice(part); } return vectorFactory(res); } /*package-private*/ final @ForceInline <M extends VectorMask<Double>> DoubleVector unsliceTemplate(Class<M> maskType, int origin, Vector<Double> w, int part, M m) { DoubleVector that = (DoubleVector) w; that.check(this); DoubleVector slice = that.sliceTemplate(origin, that); slice = slice.blendTemplate(maskType, this, m); return slice.unsliceTemplate(origin, w, part); }
{@inheritDoc}
/** * {@inheritDoc} <!--workaround--> */
@Override public abstract DoubleVector unslice(int origin, Vector<Double> w, int part, VectorMask<Double> m);
{@inheritDoc}
/** * {@inheritDoc} <!--workaround--> */
@Override public abstract DoubleVector unslice(int origin); private ArrayIndexOutOfBoundsException wrongPartForSlice(int part) { String msg = String.format("bad part number %d for slice operation", part); return new ArrayIndexOutOfBoundsException(msg); }
{@inheritDoc}
/** * {@inheritDoc} <!--workaround--> */
@Override public abstract DoubleVector rearrange(VectorShuffle<Double> m); /*package-private*/ @ForceInline final <S extends VectorShuffle<Double>> DoubleVector rearrangeTemplate(Class<S> shuffletype, S shuffle) { shuffle.checkIndexes(); return VectorSupport.rearrangeOp( getClass(), shuffletype, double.class, length(), this, shuffle, (v1, s_) -> v1.uOp((i, a) -> { int ei = s_.laneSource(i); return v1.lane(ei); })); }
{@inheritDoc}
/** * {@inheritDoc} <!--workaround--> */
@Override public abstract DoubleVector rearrange(VectorShuffle<Double> s, VectorMask<Double> m); /*package-private*/ @ForceInline final <S extends VectorShuffle<Double>> DoubleVector rearrangeTemplate(Class<S> shuffletype, S shuffle, VectorMask<Double> m) { DoubleVector unmasked = VectorSupport.rearrangeOp( getClass(), shuffletype, double.class, length(), this, shuffle, (v1, s_) -> v1.uOp((i, a) -> { int ei = s_.laneSource(i); return ei < 0 ? 0 : v1.lane(ei); })); VectorMask<Double> valid = shuffle.laneIsValid(); if (m.andNot(valid).anyTrue()) { shuffle.checkIndexes(); throw new AssertionError(); } return broadcast((double)0).blend(unmasked, m); }
{@inheritDoc}
/** * {@inheritDoc} <!--workaround--> */
@Override public abstract DoubleVector rearrange(VectorShuffle<Double> s, Vector<Double> v); /*package-private*/ @ForceInline final <S extends VectorShuffle<Double>> DoubleVector rearrangeTemplate(Class<S> shuffletype, S shuffle, DoubleVector v) { VectorMask<Double> valid = shuffle.laneIsValid(); @SuppressWarnings("unchecked") S ws = (S) shuffle.wrapIndexes(); DoubleVector r0 = VectorSupport.rearrangeOp( getClass(), shuffletype, double.class, length(), this, ws, (v0, s_) -> v0.uOp((i, a) -> { int ei = s_.laneSource(i); return v0.lane(ei); })); DoubleVector r1 = VectorSupport.rearrangeOp( getClass(), shuffletype, double.class, length(), v, ws, (v1, s_) -> v1.uOp((i, a) -> { int ei = s_.laneSource(i); return v1.lane(ei); })); return r1.blend(r0, valid); }
{@inheritDoc}
/** * {@inheritDoc} <!--workaround--> */
@Override public abstract DoubleVector selectFrom(Vector<Double> v); /*package-private*/ @ForceInline final DoubleVector selectFromTemplate(DoubleVector v) { return v.rearrange(this.toShuffle()); }
{@inheritDoc}
/** * {@inheritDoc} <!--workaround--> */
@Override public abstract DoubleVector selectFrom(Vector<Double> s, VectorMask<Double> m); /*package-private*/ @ForceInline final DoubleVector selectFromTemplate(DoubleVector v, AbstractMask<Double> m) { return v.rearrange(this.toShuffle(), m); } /// Ternary operations
Multiplies this vector by a second input vector, and sums the result with a third. Extended precision is used for the intermediate result, avoiding possible loss of precision from rounding once for each of the two operations. The result is numerically close to this.mul(b).add(c), and is typically closer to the true mathematical result. This is a lane-wise ternary operation which applies an operation conforming to the specification of Math.fma(a,b,c) to each lane. This method is also equivalent to the expression lanewise( FMA, b, c).
Params:
  • b – the second input vector, supplying multiplier values
  • c – the third input vector, supplying addend values
See Also:
Returns:the product of this vector and the second input vector summed with the third input vector, using extended precision for the intermediate result
/** * Multiplies this vector by a second input vector, and sums * the result with a third. * * Extended precision is used for the intermediate result, * avoiding possible loss of precision from rounding once * for each of the two operations. * The result is numerically close to {@code this.mul(b).add(c)}, * and is typically closer to the true mathematical result. * * This is a lane-wise ternary operation which applies an operation * conforming to the specification of * {@link Math#fma(double,double,double) Math.fma(a,b,c)} * to each lane. * * This method is also equivalent to the expression * {@link #lanewise(VectorOperators.Ternary,Vector,Vector) * lanewise}{@code (}{@link VectorOperators#FMA * FMA}{@code , b, c)}. * * @param b the second input vector, supplying multiplier values * @param c the third input vector, supplying addend values * @return the product of this vector and the second input vector * summed with the third input vector, using extended precision * for the intermediate result * @see #fma(double,double) * @see VectorOperators#FMA * @see #lanewise(VectorOperators.Ternary,Vector,Vector,VectorMask) */
@ForceInline public final DoubleVector fma(Vector<Double> b, Vector<Double> c) { return lanewise(FMA, b, c); }
Multiplies this vector by a scalar multiplier, and sums the result with a scalar addend. Extended precision is used for the intermediate result, avoiding possible loss of precision from rounding once for each of the two operations. The result is numerically close to this.mul(b).add(c), and is typically closer to the true mathematical result. This is a lane-wise ternary operation which applies an operation conforming to the specification of Math.fma(a,b,c) to each lane. This method is also equivalent to the expression lanewise( FMA, b, c).
Params:
  • b – the scalar multiplier
  • c – the scalar addend
See Also:
Returns:the product of this vector and the scalar multiplier summed with scalar addend, using extended precision for the intermediate result
/** * Multiplies this vector by a scalar multiplier, and sums * the result with a scalar addend. * * Extended precision is used for the intermediate result, * avoiding possible loss of precision from rounding once * for each of the two operations. * The result is numerically close to {@code this.mul(b).add(c)}, * and is typically closer to the true mathematical result. * * This is a lane-wise ternary operation which applies an operation * conforming to the specification of * {@link Math#fma(double,double,double) Math.fma(a,b,c)} * to each lane. * * This method is also equivalent to the expression * {@link #lanewise(VectorOperators.Ternary,Vector,Vector) * lanewise}{@code (}{@link VectorOperators#FMA * FMA}{@code , b, c)}. * * @param b the scalar multiplier * @param c the scalar addend * @return the product of this vector and the scalar multiplier * summed with scalar addend, using extended precision * for the intermediate result * @see #fma(Vector,Vector) * @see VectorOperators#FMA * @see #lanewise(VectorOperators.Ternary,double,double,VectorMask) */
@ForceInline public final DoubleVector fma(double b, double c) { return lanewise(FMA, b, c); } // Don't bother with (Vector,double) and (double,Vector) overloadings. // Type specific horizontal reductions
Returns a value accumulated from all the lanes of this vector. This is an associative cross-lane reduction operation which applies the specified operation to all the lane elements.

A few reduction operations do not support arbitrary reordering of their operands, yet are included here because of their usefulness.

  • In the case of FIRST_NONZERO, the reduction returns the value from the lowest-numbered non-zero lane. (As with MAX and MIN, floating point negative zero -0.0 is treated as a value distinct from the default value, positive zero. So a first-nonzero lane reduction might return -0.0 even in the presence of non-zero lane values.)
  • In the case of ADD and MUL, the precise result will reflect the choice of an arbitrary order of operations, which may even vary over time. For further details see the section Operations on floating point vectors.
  • All other reduction operations are fully commutative and associative. The implementation can choose any order of processing, yet it will always produce the same result.
Params:
  • op – the operation used to combine lane values
Throws:
See Also:
Returns:the accumulated result
/** * Returns a value accumulated from all the lanes of this vector. * * This is an associative cross-lane reduction operation which * applies the specified operation to all the lane elements. * <p> * A few reduction operations do not support arbitrary reordering * of their operands, yet are included here because of their * usefulness. * <ul> * <li> * In the case of {@code FIRST_NONZERO}, the reduction returns * the value from the lowest-numbered non-zero lane. * (As with {@code MAX} and {@code MIN}, floating point negative * zero {@code -0.0} is treated as a value distinct from * the default value, positive zero. So a first-nonzero lane reduction * might return {@code -0.0} even in the presence of non-zero * lane values.) * <li> * In the case of {@code ADD} and {@code MUL}, the * precise result will reflect the choice of an arbitrary order * of operations, which may even vary over time. * For further details see the section * <a href="VectorOperators.html#fp_assoc">Operations on floating point vectors</a>. * <li> * All other reduction operations are fully commutative and * associative. The implementation can choose any order of * processing, yet it will always produce the same result. * </ul> * * @param op the operation used to combine lane values * @return the accumulated result * @throws UnsupportedOperationException if this vector does * not support the requested operation * @see #reduceLanes(VectorOperators.Associative,VectorMask) * @see #add(Vector) * @see #mul(Vector) * @see #min(Vector) * @see #max(Vector) * @see VectorOperators#FIRST_NONZERO */
public abstract double reduceLanes(VectorOperators.Associative op);
Returns a value accumulated from selected lanes of this vector, controlled by a mask. This is an associative cross-lane reduction operation which applies the specified operation to the selected lane elements.

If no elements are selected, an operation-specific identity value is returned.

  • If the operation is ADD or FIRST_NONZERO, then the identity value is positive zero, the default double value.
  • If the operation is MUL, then the identity value is one.
  • If the operation is MAX, then the identity value is Double.NEGATIVE_INFINITY.
  • If the operation is MIN, then the identity value is Double.POSITIVE_INFINITY.

A few reduction operations do not support arbitrary reordering of their operands, yet are included here because of their usefulness.

  • In the case of FIRST_NONZERO, the reduction returns the value from the lowest-numbered non-zero lane. (As with MAX and MIN, floating point negative zero -0.0 is treated as a value distinct from the default value, positive zero. So a first-nonzero lane reduction might return -0.0 even in the presence of non-zero lane values.)
  • In the case of ADD and MUL, the precise result will reflect the choice of an arbitrary order of operations, which may even vary over time. For further details see the section Operations on floating point vectors.
  • All other reduction operations are fully commutative and associative. The implementation can choose any order of processing, yet it will always produce the same result.
Params:
  • op – the operation used to combine lane values
  • m – the mask controlling lane selection
Throws:
See Also:
Returns:the reduced result accumulated from the selected lane values
/** * Returns a value accumulated from selected lanes of this vector, * controlled by a mask. * * This is an associative cross-lane reduction operation which * applies the specified operation to the selected lane elements. * <p> * If no elements are selected, an operation-specific identity * value is returned. * <ul> * <li> * If the operation is * {@code ADD} * or {@code FIRST_NONZERO}, * then the identity value is positive zero, the default {@code double} value. * <li> * If the operation is {@code MUL}, * then the identity value is one. * <li> * If the operation is {@code MAX}, * then the identity value is {@code Double.NEGATIVE_INFINITY}. * <li> * If the operation is {@code MIN}, * then the identity value is {@code Double.POSITIVE_INFINITY}. * </ul> * <p> * A few reduction operations do not support arbitrary reordering * of their operands, yet are included here because of their * usefulness. * <ul> * <li> * In the case of {@code FIRST_NONZERO}, the reduction returns * the value from the lowest-numbered non-zero lane. * (As with {@code MAX} and {@code MIN}, floating point negative * zero {@code -0.0} is treated as a value distinct from * the default value, positive zero. So a first-nonzero lane reduction * might return {@code -0.0} even in the presence of non-zero * lane values.) * <li> * In the case of {@code ADD} and {@code MUL}, the * precise result will reflect the choice of an arbitrary order * of operations, which may even vary over time. * For further details see the section * <a href="VectorOperators.html#fp_assoc">Operations on floating point vectors</a>. * <li> * All other reduction operations are fully commutative and * associative. The implementation can choose any order of * processing, yet it will always produce the same result. * </ul> * * @param op the operation used to combine lane values * @param m the mask controlling lane selection * @return the reduced result accumulated from the selected lane values * @throws UnsupportedOperationException if this vector does * not support the requested operation * @see #reduceLanes(VectorOperators.Associative) */
public abstract double reduceLanes(VectorOperators.Associative op, VectorMask<Double> m); /*package-private*/ @ForceInline final double reduceLanesTemplate(VectorOperators.Associative op, VectorMask<Double> m) { DoubleVector v = reduceIdentityVector(op).blend(this, m); return v.reduceLanesTemplate(op); } /*package-private*/ @ForceInline final double reduceLanesTemplate(VectorOperators.Associative op) { if (op == FIRST_NONZERO) { // FIXME: The JIT should handle this, and other scan ops alos. VectorMask<Long> thisNZ = this.viewAsIntegralLanes().compare(NE, (long) 0); return this.lane(thisNZ.firstTrue()); } int opc = opCode(op); return fromBits(VectorSupport.reductionCoerced( opc, getClass(), double.class, length(), this, REDUCE_IMPL.find(op, opc, (opc_) -> { switch (opc_) { case VECTOR_OP_ADD: return v -> toBits(v.rOp((double)0, (i, a, b) -> (double)(a + b))); case VECTOR_OP_MUL: return v -> toBits(v.rOp((double)1, (i, a, b) -> (double)(a * b))); case VECTOR_OP_MIN: return v -> toBits(v.rOp(MAX_OR_INF, (i, a, b) -> (double) Math.min(a, b))); case VECTOR_OP_MAX: return v -> toBits(v.rOp(MIN_OR_INF, (i, a, b) -> (double) Math.max(a, b))); default: return null; }}))); } private static final ImplCache<Associative,Function<DoubleVector,Long>> REDUCE_IMPL = new ImplCache<>(Associative.class, DoubleVector.class); private @ForceInline DoubleVector reduceIdentityVector(VectorOperators.Associative op) { int opc = opCode(op); UnaryOperator<DoubleVector> fn = REDUCE_ID_IMPL.find(op, opc, (opc_) -> { switch (opc_) { case VECTOR_OP_ADD: return v -> v.broadcast(0); case VECTOR_OP_MUL: return v -> v.broadcast(1); case VECTOR_OP_MIN: return v -> v.broadcast(MAX_OR_INF); case VECTOR_OP_MAX: return v -> v.broadcast(MIN_OR_INF); default: return null; } }); return fn.apply(this); } private static final ImplCache<Associative,UnaryOperator<DoubleVector>> REDUCE_ID_IMPL = new ImplCache<>(Associative.class, DoubleVector.class); private static final double MIN_OR_INF = Double.NEGATIVE_INFINITY; private static final double MAX_OR_INF = Double.POSITIVE_INFINITY; public @Override abstract long reduceLanesToLong(VectorOperators.Associative op); public @Override abstract long reduceLanesToLong(VectorOperators.Associative op, VectorMask<Double> m); // Type specific accessors
Gets the lane element at lane index i
Params:
  • i – the lane index
Throws:
Returns:the lane element at lane index i
/** * Gets the lane element at lane index {@code i} * * @param i the lane index * @return the lane element at lane index {@code i} * @throws IllegalArgumentException if the index is is out of range * ({@code < 0 || >= length()}) */
public abstract double lane(int i);
Replaces the lane element of this vector at lane index i with value e. This is a cross-lane operation and behaves as if it returns the result of blending this vector with an input vector that is the result of broadcasting e and a mask that has only one lane set at lane index i.
Params:
  • i – the lane index of the lane element to be replaced
  • e – the value to be placed
Throws:
Returns:the result of replacing the lane element of this vector at lane index i with value e.
/** * Replaces the lane element of this vector at lane index {@code i} with * value {@code e}. * * This is a cross-lane operation and behaves as if it returns the result * of blending this vector with an input vector that is the result of * broadcasting {@code e} and a mask that has only one lane set at lane * index {@code i}. * * @param i the lane index of the lane element to be replaced * @param e the value to be placed * @return the result of replacing the lane element of this vector at lane * index {@code i} with value {@code e}. * @throws IllegalArgumentException if the index is is out of range * ({@code < 0 || >= length()}) */
public abstract DoubleVector withLane(int i, double e); // Memory load operations
Returns an array of type double[] containing all the lane values. The array length is the same as the vector length. The array elements are stored in lane order.

This method behaves as if it stores this vector into an allocated array (using intoArray) and returns the array as follows:


  double[] a = new double[this.length()];
  this.intoArray(a, 0);
  return a;
Returns:an array containing the lane values of this vector
/** * Returns an array of type {@code double[]} * containing all the lane values. * The array length is the same as the vector length. * The array elements are stored in lane order. * <p> * This method behaves as if it stores * this vector into an allocated array * (using {@link #intoArray(double[], int) intoArray}) * and returns the array as follows: * <pre>{@code * double[] a = new double[this.length()]; * this.intoArray(a, 0); * return a; * }</pre> * * @return an array containing the lane values of this vector */
@ForceInline @Override public final double[] toArray() { double[] a = new double[vspecies().laneCount()]; intoArray(a, 0); return a; }
{@inheritDoc}
/** {@inheritDoc} <!--workaround--> */
@ForceInline @Override public final int[] toIntArray() { double[] a = toArray(); int[] res = new int[a.length]; for (int i = 0; i < a.length; i++) { double e = a[i]; res[i] = (int) DoubleSpecies.toIntegralChecked(e, true); } return res; }
{@inheritDoc}
/** {@inheritDoc} <!--workaround--> */
@ForceInline @Override public final long[] toLongArray() { double[] a = toArray(); long[] res = new long[a.length]; for (int i = 0; i < a.length; i++) { double e = a[i]; res[i] = DoubleSpecies.toIntegralChecked(e, false); } return res; }
{@inheritDoc}
Implementation Note: This is an alias for toArray() When this method is used on used on vectors of type DoubleVector, there will be no loss of precision.
/** {@inheritDoc} <!--workaround--> * @implNote * This is an alias for {@link #toArray()} * When this method is used on used on vectors * of type {@code DoubleVector}, * there will be no loss of precision. */
@ForceInline @Override public final double[] toDoubleArray() { return toArray(); }
Loads a vector from a byte array starting at an offset. Bytes are composed into primitive lane elements according to the specified byte order. The vector is arranged into lanes according to memory ordering.

This method behaves as if it returns the result of calling fromByteBuffer() as follows:


var bb = ByteBuffer.wrap(a);
var m = species.maskAll(true);
return fromByteBuffer(species, bb, offset, bo, m);
Params:
  • species – species of desired vector
  • a – the byte array
  • offset – the offset into the array
  • bo – the intended byte order
Throws:
Returns:a vector loaded from a byte array
/** * Loads a vector from a byte array starting at an offset. * Bytes are composed into primitive lane elements according * to the specified byte order. * The vector is arranged into lanes according to * <a href="Vector.html#lane-order">memory ordering</a>. * <p> * This method behaves as if it returns the result of calling * {@link #fromByteBuffer(VectorSpecies,ByteBuffer,int,ByteOrder,VectorMask) * fromByteBuffer()} as follows: * <pre>{@code * var bb = ByteBuffer.wrap(a); * var m = species.maskAll(true); * return fromByteBuffer(species, bb, offset, bo, m); * }</pre> * * @param species species of desired vector * @param a the byte array * @param offset the offset into the array * @param bo the intended byte order * @return a vector loaded from a byte array * @throws IndexOutOfBoundsException * if {@code offset+N*ESIZE < 0} * or {@code offset+(N+1)*ESIZE > a.length} * for any lane {@code N} in the vector */
@ForceInline public static DoubleVector fromByteArray(VectorSpecies<Double> species, byte[] a, int offset, ByteOrder bo) { offset = checkFromIndexSize(offset, species.vectorByteSize(), a.length); DoubleSpecies vsp = (DoubleSpecies) species; return vsp.dummyVector().fromByteArray0(a, offset).maybeSwap(bo); }
Loads a vector from a byte array starting at an offset and using a mask. Lanes where the mask is unset are filled with the default value of double (positive zero). Bytes are composed into primitive lane elements according to the specified byte order. The vector is arranged into lanes according to memory ordering.

This method behaves as if it returns the result of calling fromByteBuffer() as follows:


var bb = ByteBuffer.wrap(a);
return fromByteBuffer(species, bb, offset, bo, m);
Params:
  • species – species of desired vector
  • a – the byte array
  • offset – the offset into the array
  • bo – the intended byte order
  • m – the mask controlling lane selection
Throws:
  • IndexOutOfBoundsException – if offset+N*ESIZE < 0 or offset+(N+1)*ESIZE > a.length for any lane N in the vector where the mask is set
Returns:a vector loaded from a byte array
/** * Loads a vector from a byte array starting at an offset * and using a mask. * Lanes where the mask is unset are filled with the default * value of {@code double} (positive zero). * Bytes are composed into primitive lane elements according * to the specified byte order. * The vector is arranged into lanes according to * <a href="Vector.html#lane-order">memory ordering</a>. * <p> * This method behaves as if it returns the result of calling * {@link #fromByteBuffer(VectorSpecies,ByteBuffer,int,ByteOrder,VectorMask) * fromByteBuffer()} as follows: * <pre>{@code * var bb = ByteBuffer.wrap(a); * return fromByteBuffer(species, bb, offset, bo, m); * }</pre> * * @param species species of desired vector * @param a the byte array * @param offset the offset into the array * @param bo the intended byte order * @param m the mask controlling lane selection * @return a vector loaded from a byte array * @throws IndexOutOfBoundsException * if {@code offset+N*ESIZE < 0} * or {@code offset+(N+1)*ESIZE > a.length} * for any lane {@code N} in the vector * where the mask is set */
@ForceInline public static DoubleVector fromByteArray(VectorSpecies<Double> species, byte[] a, int offset, ByteOrder bo, VectorMask<Double> m) { DoubleSpecies vsp = (DoubleSpecies) species; if (offset >= 0 && offset <= (a.length - species.vectorByteSize())) { DoubleVector zero = vsp.zero(); DoubleVector v = zero.fromByteArray0(a, offset); return zero.blend(v.maybeSwap(bo), m); } // FIXME: optimize checkMaskFromIndexSize(offset, vsp, m, 8, a.length); ByteBuffer wb = wrapper(a, bo); return vsp.ldOp(wb, offset, (AbstractMask<Double>)m, (wb_, o, i) -> wb_.getDouble(o + i * 8)); }
Loads a vector from an array of type double[] starting at an offset. For each vector lane, where N is the vector lane index, the array element at index offset + N is placed into the resulting vector at lane index N.
Params:
  • species – species of desired vector
  • a – the array
  • offset – the offset into the array
Throws:
Returns:the vector loaded from an array
/** * Loads a vector from an array of type {@code double[]} * starting at an offset. * For each vector lane, where {@code N} is the vector lane index, the * array element at index {@code offset + N} is placed into the * resulting vector at lane index {@code N}. * * @param species species of desired vector * @param a the array * @param offset the offset into the array * @return the vector loaded from an array * @throws IndexOutOfBoundsException * if {@code offset+N < 0} or {@code offset+N >= a.length} * for any lane {@code N} in the vector */
@ForceInline public static DoubleVector fromArray(VectorSpecies<Double> species, double[] a, int offset) { offset = checkFromIndexSize(offset, species.length(), a.length); DoubleSpecies vsp = (DoubleSpecies) species; return vsp.dummyVector().fromArray0(a, offset); }
Loads a vector from an array of type double[] starting at an offset and using a mask. Lanes where the mask is unset are filled with the default value of double (positive zero). For each vector lane, where N is the vector lane index, if the mask lane at index N is set then the array element at index offset + N is placed into the resulting vector at lane index N, otherwise the default element value is placed into the resulting vector at lane index N.
Params:
  • species – species of desired vector
  • a – the array
  • offset – the offset into the array
  • m – the mask controlling lane selection
Throws:
Returns:the vector loaded from an array
/** * Loads a vector from an array of type {@code double[]} * starting at an offset and using a mask. * Lanes where the mask is unset are filled with the default * value of {@code double} (positive zero). * For each vector lane, where {@code N} is the vector lane index, * if the mask lane at index {@code N} is set then the array element at * index {@code offset + N} is placed into the resulting vector at lane index * {@code N}, otherwise the default element value is placed into the * resulting vector at lane index {@code N}. * * @param species species of desired vector * @param a the array * @param offset the offset into the array * @param m the mask controlling lane selection * @return the vector loaded from an array * @throws IndexOutOfBoundsException * if {@code offset+N < 0} or {@code offset+N >= a.length} * for any lane {@code N} in the vector * where the mask is set */
@ForceInline public static DoubleVector fromArray(VectorSpecies<Double> species, double[] a, int offset, VectorMask<Double> m) { DoubleSpecies vsp = (DoubleSpecies) species; if (offset >= 0 && offset <= (a.length - species.length())) { DoubleVector zero = vsp.zero(); return zero.blend(zero.fromArray0(a, offset), m); } // FIXME: optimize checkMaskFromIndexSize(offset, vsp, m, 1, a.length); return vsp.vOp(m, i -> a[offset + i]); }
Gathers a new vector composed of elements from an array of type double[], using indexes obtained by adding a fixed offset to a series of secondary offsets from an index map. The index map is a contiguous sequence of VLENGTH elements in a second array of ints, starting at a given mapOffset.

For each vector lane, where N is the vector lane index, the lane is loaded from the array element a[f(N)], where f(N) is the index mapping expression offset + indexMap[mapOffset + N]].

Params:
  • species – species of desired vector
  • a – the array
  • offset – the offset into the array, may be negative if relative indexes in the index map compensate to produce a value within the array bounds
  • indexMap – the index map
  • mapOffset – the offset into the index map
Throws:
  • IndexOutOfBoundsException – if mapOffset+N < 0 or if mapOffset+N >= indexMap.length, or if f(N)=offset+indexMap[mapOffset+N] is an invalid index into a, for any lane N in the vector
See Also:
Returns:the vector loaded from the indexed elements of the array
/** * Gathers a new vector composed of elements from an array of type * {@code double[]}, * using indexes obtained by adding a fixed {@code offset} to a * series of secondary offsets from an <em>index map</em>. * The index map is a contiguous sequence of {@code VLENGTH} * elements in a second array of {@code int}s, starting at a given * {@code mapOffset}. * <p> * For each vector lane, where {@code N} is the vector lane index, * the lane is loaded from the array * element {@code a[f(N)]}, where {@code f(N)} is the * index mapping expression * {@code offset + indexMap[mapOffset + N]]}. * * @param species species of desired vector * @param a the array * @param offset the offset into the array, may be negative if relative * indexes in the index map compensate to produce a value within the * array bounds * @param indexMap the index map * @param mapOffset the offset into the index map * @return the vector loaded from the indexed elements of the array * @throws IndexOutOfBoundsException * if {@code mapOffset+N < 0} * or if {@code mapOffset+N >= indexMap.length}, * or if {@code f(N)=offset+indexMap[mapOffset+N]} * is an invalid index into {@code a}, * for any lane {@code N} in the vector * @see DoubleVector#toIntArray() */
@ForceInline public static DoubleVector fromArray(VectorSpecies<Double> species, double[] a, int offset, int[] indexMap, int mapOffset) { DoubleSpecies vsp = (DoubleSpecies) species; IntVector.IntSpecies isp = IntVector.species(vsp.indexShape()); Objects.requireNonNull(a); Objects.requireNonNull(indexMap); Class<? extends DoubleVector> vectorType = vsp.vectorType(); if (vsp.laneCount() == 1) { return DoubleVector.fromArray(vsp, a, offset + indexMap[mapOffset]); } // Index vector: vix[0:n] = k -> offset + indexMap[mapOffset + k] IntVector vix; if (isp.laneCount() != vsp.laneCount()) { // For DoubleMaxVector, if vector length is non-power-of-two or // 2048 bits, indexShape of Double species is S_MAX_BIT. // Assume that vector length is 2048, then the lane count of Double // vector is 32. When converting Double species to int species, // indexShape is still S_MAX_BIT, but the lane count of int vector // is 64. So when loading index vector (IntVector), only lower half // of index data is needed. vix = IntVector .fromArray(isp, indexMap, mapOffset, IntMaxVector.IntMaxMask.LOWER_HALF_TRUE_MASK) .add(offset); } else { vix = IntVector .fromArray(isp, indexMap, mapOffset) .add(offset); } vix = VectorIntrinsics.checkIndex(vix, a.length); return VectorSupport.loadWithMap( vectorType, double.class, vsp.laneCount(), IntVector.species(vsp.indexShape()).vectorType(), a, ARRAY_BASE, vix, a, offset, indexMap, mapOffset, vsp, (double[] c, int idx, int[] iMap, int idy, DoubleSpecies s) -> s.vOp(n -> c[idx + iMap[idy+n]])); }
Gathers a new vector composed of elements from an array of type double[], under the control of a mask, and using indexes obtained by adding a fixed offset to a series of secondary offsets from an index map. The index map is a contiguous sequence of VLENGTH elements in a second array of ints, starting at a given mapOffset.

For each vector lane, where N is the vector lane index, if the lane is set in the mask, the lane is loaded from the array element a[f(N)], where f(N) is the index mapping expression offset + indexMap[mapOffset + N]]. Unset lanes in the resulting vector are set to zero.

Params:
  • species – species of desired vector
  • a – the array
  • offset – the offset into the array, may be negative if relative indexes in the index map compensate to produce a value within the array bounds
  • indexMap – the index map
  • mapOffset – the offset into the index map
  • m – the mask controlling lane selection
Throws:
  • IndexOutOfBoundsException – if mapOffset+N < 0 or if mapOffset+N >= indexMap.length, or if f(N)=offset+indexMap[mapOffset+N] is an invalid index into a, for any lane N in the vector where the mask is set
See Also:
Returns:the vector loaded from the indexed elements of the array
/** * Gathers a new vector composed of elements from an array of type * {@code double[]}, * under the control of a mask, and * using indexes obtained by adding a fixed {@code offset} to a * series of secondary offsets from an <em>index map</em>. * The index map is a contiguous sequence of {@code VLENGTH} * elements in a second array of {@code int}s, starting at a given * {@code mapOffset}. * <p> * For each vector lane, where {@code N} is the vector lane index, * if the lane is set in the mask, * the lane is loaded from the array * element {@code a[f(N)]}, where {@code f(N)} is the * index mapping expression * {@code offset + indexMap[mapOffset + N]]}. * Unset lanes in the resulting vector are set to zero. * * @param species species of desired vector * @param a the array * @param offset the offset into the array, may be negative if relative * indexes in the index map compensate to produce a value within the * array bounds * @param indexMap the index map * @param mapOffset the offset into the index map * @param m the mask controlling lane selection * @return the vector loaded from the indexed elements of the array * @throws IndexOutOfBoundsException * if {@code mapOffset+N < 0} * or if {@code mapOffset+N >= indexMap.length}, * or if {@code f(N)=offset+indexMap[mapOffset+N]} * is an invalid index into {@code a}, * for any lane {@code N} in the vector * where the mask is set * @see DoubleVector#toIntArray() */
@ForceInline public static DoubleVector fromArray(VectorSpecies<Double> species, double[] a, int offset, int[] indexMap, int mapOffset, VectorMask<Double> m) { if (m.allTrue()) { return fromArray(species, a, offset, indexMap, mapOffset); } else { // FIXME: Cannot vectorize yet, if there's a mask. DoubleSpecies vsp = (DoubleSpecies) species; return vsp.vOp(m, n -> a[offset + indexMap[mapOffset + n]]); } }
Loads a vector from a byte buffer starting at an offset into the byte buffer. Bytes are composed into primitive lane elements according to the specified byte order. The vector is arranged into lanes according to memory ordering.

This method behaves as if it returns the result of calling fromByteBuffer() as follows:


var m = species.maskAll(true);
return fromByteBuffer(species, bb, offset, bo, m);
Params:
  • species – species of desired vector
  • bb – the byte buffer
  • offset – the offset into the byte buffer
  • bo – the intended byte order
Throws:
Returns:a vector loaded from a byte buffer
/** * Loads a vector from a {@linkplain ByteBuffer byte buffer} * starting at an offset into the byte buffer. * Bytes are composed into primitive lane elements according * to the specified byte order. * The vector is arranged into lanes according to * <a href="Vector.html#lane-order">memory ordering</a>. * <p> * This method behaves as if it returns the result of calling * {@link #fromByteBuffer(VectorSpecies,ByteBuffer,int,ByteOrder,VectorMask) * fromByteBuffer()} as follows: * <pre>{@code * var m = species.maskAll(true); * return fromByteBuffer(species, bb, offset, bo, m); * }</pre> * * @param species species of desired vector * @param bb the byte buffer * @param offset the offset into the byte buffer * @param bo the intended byte order * @return a vector loaded from a byte buffer * @throws IndexOutOfBoundsException * if {@code offset+N*8 < 0} * or {@code offset+N*8 >= bb.limit()} * for any lane {@code N} in the vector */
@ForceInline public static DoubleVector fromByteBuffer(VectorSpecies<Double> species, ByteBuffer bb, int offset, ByteOrder bo) { offset = checkFromIndexSize(offset, species.vectorByteSize(), bb.limit()); DoubleSpecies vsp = (DoubleSpecies) species; return vsp.dummyVector().fromByteBuffer0(bb, offset).maybeSwap(bo); }
Loads a vector from a byte buffer starting at an offset into the byte buffer and using a mask. Lanes where the mask is unset are filled with the default value of double (positive zero). Bytes are composed into primitive lane elements according to the specified byte order. The vector is arranged into lanes according to memory ordering.

The following pseudocode illustrates the behavior:


DoubleBuffer eb = bb.duplicate()
    .position(offset)
    .order(bo).asDoubleBuffer();
double[] ar = new double[species.length()];
for (int n = 0; n < ar.length; n++) {
    if (m.laneIsSet(n)) {
        ar[n] = eb.get(n);
    }
 }
DoubleVector r = DoubleVector.fromArray(species, ar, 0);
Params:
  • species – species of desired vector
  • bb – the byte buffer
  • offset – the offset into the byte buffer
  • bo – the intended byte order
  • m – the mask controlling lane selection
Throws:
  • IndexOutOfBoundsException – if offset+N*8 < 0 or offset+N*8 >= bb.limit() for any lane N in the vector where the mask is set
Implementation Note: This operation is likely to be more efficient if the specified byte order is the same as the platform native order, since this method will not need to reorder the bytes of lane values.
Returns:a vector loaded from a byte buffer
/** * Loads a vector from a {@linkplain ByteBuffer byte buffer} * starting at an offset into the byte buffer * and using a mask. * Lanes where the mask is unset are filled with the default * value of {@code double} (positive zero). * Bytes are composed into primitive lane elements according * to the specified byte order. * The vector is arranged into lanes according to * <a href="Vector.html#lane-order">memory ordering</a>. * <p> * The following pseudocode illustrates the behavior: * <pre>{@code * DoubleBuffer eb = bb.duplicate() * .position(offset) * .order(bo).asDoubleBuffer(); * double[] ar = new double[species.length()]; * for (int n = 0; n < ar.length; n++) { * if (m.laneIsSet(n)) { * ar[n] = eb.get(n); * } * } * DoubleVector r = DoubleVector.fromArray(species, ar, 0); * }</pre> * @implNote * This operation is likely to be more efficient if * the specified byte order is the same as * {@linkplain ByteOrder#nativeOrder() * the platform native order}, * since this method will not need to reorder * the bytes of lane values. * * @param species species of desired vector * @param bb the byte buffer * @param offset the offset into the byte buffer * @param bo the intended byte order * @param m the mask controlling lane selection * @return a vector loaded from a byte buffer * @throws IndexOutOfBoundsException * if {@code offset+N*8 < 0} * or {@code offset+N*8 >= bb.limit()} * for any lane {@code N} in the vector * where the mask is set */
@ForceInline public static DoubleVector fromByteBuffer(VectorSpecies<Double> species, ByteBuffer bb, int offset, ByteOrder bo, VectorMask<Double> m) { DoubleSpecies vsp = (DoubleSpecies) species; if (offset >= 0 && offset <= (bb.limit() - species.vectorByteSize())) { DoubleVector zero = vsp.zero(); DoubleVector v = zero.fromByteBuffer0(bb, offset); return zero.blend(v.maybeSwap(bo), m); } // FIXME: optimize checkMaskFromIndexSize(offset, vsp, m, 8, bb.limit()); ByteBuffer wb = wrapper(bb, bo); return vsp.ldOp(wb, offset, (AbstractMask<Double>)m, (wb_, o, i) -> wb_.getDouble(o + i * 8)); } // Memory store operations
Stores this vector into an array of type double[] starting at an offset.

For each vector lane, where N is the vector lane index, the lane element at index N is stored into the array element a[offset+N].

Params:
  • a – the array, of type double[]
  • offset – the offset into the array
Throws:
/** * Stores this vector into an array of type {@code double[]} * starting at an offset. * <p> * For each vector lane, where {@code N} is the vector lane index, * the lane element at index {@code N} is stored into the array * element {@code a[offset+N]}. * * @param a the array, of type {@code double[]} * @param offset the offset into the array * @throws IndexOutOfBoundsException * if {@code offset+N < 0} or {@code offset+N >= a.length} * for any lane {@code N} in the vector */
@ForceInline public final void intoArray(double[] a, int offset) { offset = checkFromIndexSize(offset, length(), a.length); DoubleSpecies vsp = vspecies(); VectorSupport.store( vsp.vectorType(), vsp.elementType(), vsp.laneCount(), a, arrayAddress(a, offset), this, a, offset, (arr, off, v) -> v.stOp(arr, off, (arr_, off_, i, e) -> arr_[off_ + i] = e)); }
Stores this vector into an array of double starting at offset and using a mask.

For each vector lane, where N is the vector lane index, the lane element at index N is stored into the array element a[offset+N]. If the mask lane at N is unset then the corresponding array element a[offset+N] is left unchanged.

Array range checking is done for lanes where the mask is set. Lanes where the mask is unset are not stored and do not need to correspond to legitimate elements of a. That is, unset lanes may correspond to array indexes less than zero or beyond the end of the array.

Params:
  • a – the array, of type double[]
  • offset – the offset into the array
  • m – the mask controlling lane storage
Throws:
/** * Stores this vector into an array of {@code double} * starting at offset and using a mask. * <p> * For each vector lane, where {@code N} is the vector lane index, * the lane element at index {@code N} is stored into the array * element {@code a[offset+N]}. * If the mask lane at {@code N} is unset then the corresponding * array element {@code a[offset+N]} is left unchanged. * <p> * Array range checking is done for lanes where the mask is set. * Lanes where the mask is unset are not stored and do not need * to correspond to legitimate elements of {@code a}. * That is, unset lanes may correspond to array indexes less than * zero or beyond the end of the array. * * @param a the array, of type {@code double[]} * @param offset the offset into the array * @param m the mask controlling lane storage * @throws IndexOutOfBoundsException * if {@code offset+N < 0} or {@code offset+N >= a.length} * for any lane {@code N} in the vector * where the mask is set */
@ForceInline public final void intoArray(double[] a, int offset, VectorMask<Double> m) { if (m.allTrue()) { intoArray(a, offset); } else { // FIXME: optimize DoubleSpecies vsp = vspecies(); checkMaskFromIndexSize(offset, vsp, m, 1, a.length); stOp(a, offset, m, (arr, off, i, v) -> arr[off+i] = v); } }
Scatters this vector into an array of type double[] using indexes obtained by adding a fixed offset to a series of secondary offsets from an index map. The index map is a contiguous sequence of VLENGTH elements in a second array of ints, starting at a given mapOffset.

For each vector lane, where N is the vector lane index, the lane element at index N is stored into the array element a[f(N)], where f(N) is the index mapping expression offset + indexMap[mapOffset + N]].

Params:
  • a – the array
  • offset – an offset to combine with the index map offsets
  • indexMap – the index map
  • mapOffset – the offset into the index map
Throws:
  • IndexOutOfBoundsException – if mapOffset+N < 0 or if mapOffset+N >= indexMap.length, or if f(N)=offset+indexMap[mapOffset+N] is an invalid index into a, for any lane N in the vector
See Also:
/** * Scatters this vector into an array of type {@code double[]} * using indexes obtained by adding a fixed {@code offset} to a * series of secondary offsets from an <em>index map</em>. * The index map is a contiguous sequence of {@code VLENGTH} * elements in a second array of {@code int}s, starting at a given * {@code mapOffset}. * <p> * For each vector lane, where {@code N} is the vector lane index, * the lane element at index {@code N} is stored into the array * element {@code a[f(N)]}, where {@code f(N)} is the * index mapping expression * {@code offset + indexMap[mapOffset + N]]}. * * @param a the array * @param offset an offset to combine with the index map offsets * @param indexMap the index map * @param mapOffset the offset into the index map * @throws IndexOutOfBoundsException * if {@code mapOffset+N < 0} * or if {@code mapOffset+N >= indexMap.length}, * or if {@code f(N)=offset+indexMap[mapOffset+N]} * is an invalid index into {@code a}, * for any lane {@code N} in the vector * @see DoubleVector#toIntArray() */
@ForceInline public final void intoArray(double[] a, int offset, int[] indexMap, int mapOffset) { DoubleSpecies vsp = vspecies(); IntVector.IntSpecies isp = IntVector.species(vsp.indexShape()); if (vsp.laneCount() == 1) { intoArray(a, offset + indexMap[mapOffset]); return; } // Index vector: vix[0:n] = i -> offset + indexMap[mo + i] IntVector vix; if (isp.laneCount() != vsp.laneCount()) { // For DoubleMaxVector, if vector length is 2048 bits, indexShape // of Double species is S_MAX_BIT. and the lane count of Double // vector is 32. When converting Double species to int species, // indexShape is still S_MAX_BIT, but the lane count of int vector // is 64. So when loading index vector (IntVector), only lower half // of index data is needed. vix = IntVector .fromArray(isp, indexMap, mapOffset, IntMaxVector.IntMaxMask.LOWER_HALF_TRUE_MASK) .add(offset); } else { vix = IntVector .fromArray(isp, indexMap, mapOffset) .add(offset); } vix = VectorIntrinsics.checkIndex(vix, a.length); VectorSupport.storeWithMap( vsp.vectorType(), vsp.elementType(), vsp.laneCount(), isp.vectorType(), a, arrayAddress(a, 0), vix, this, a, offset, indexMap, mapOffset, (arr, off, v, map, mo) -> v.stOp(arr, off, (arr_, off_, i, e) -> { int j = map[mo + i]; arr[off + j] = e; })); }
Scatters this vector into an array of type double[], under the control of a mask, and using indexes obtained by adding a fixed offset to a series of secondary offsets from an index map. The index map is a contiguous sequence of VLENGTH elements in a second array of ints, starting at a given mapOffset.

For each vector lane, where N is the vector lane index, if the mask lane at index N is set then the lane element at index N is stored into the array element a[f(N)], where f(N) is the index mapping expression offset + indexMap[mapOffset + N]].

Params:
  • a – the array
  • offset – an offset to combine with the index map offsets
  • indexMap – the index map
  • mapOffset – the offset into the index map
  • m – the mask
Throws:
  • IndexOutOfBoundsException – if mapOffset+N < 0 or if mapOffset+N >= indexMap.length, or if f(N)=offset+indexMap[mapOffset+N] is an invalid index into a, for any lane N in the vector where the mask is set
See Also:
/** * Scatters this vector into an array of type {@code double[]}, * under the control of a mask, and * using indexes obtained by adding a fixed {@code offset} to a * series of secondary offsets from an <em>index map</em>. * The index map is a contiguous sequence of {@code VLENGTH} * elements in a second array of {@code int}s, starting at a given * {@code mapOffset}. * <p> * For each vector lane, where {@code N} is the vector lane index, * if the mask lane at index {@code N} is set then * the lane element at index {@code N} is stored into the array * element {@code a[f(N)]}, where {@code f(N)} is the * index mapping expression * {@code offset + indexMap[mapOffset + N]]}. * * @param a the array * @param offset an offset to combine with the index map offsets * @param indexMap the index map * @param mapOffset the offset into the index map * @param m the mask * @throws IndexOutOfBoundsException * if {@code mapOffset+N < 0} * or if {@code mapOffset+N >= indexMap.length}, * or if {@code f(N)=offset+indexMap[mapOffset+N]} * is an invalid index into {@code a}, * for any lane {@code N} in the vector * where the mask is set * @see DoubleVector#toIntArray() */
@ForceInline public final void intoArray(double[] a, int offset, int[] indexMap, int mapOffset, VectorMask<Double> m) { if (m.allTrue()) { intoArray(a, offset, indexMap, mapOffset); } else { // FIXME: Cannot vectorize yet, if there's a mask. stOp(a, offset, m, (arr, off, i, e) -> { int j = indexMap[mapOffset + i]; arr[off + j] = e; }); } }
{@inheritDoc}
/** * {@inheritDoc} <!--workaround--> */
@Override @ForceInline public final void intoByteArray(byte[] a, int offset, ByteOrder bo) { offset = checkFromIndexSize(offset, byteSize(), a.length); maybeSwap(bo).intoByteArray0(a, offset); }
{@inheritDoc}
/** * {@inheritDoc} <!--workaround--> */
@Override @ForceInline public final void intoByteArray(byte[] a, int offset, ByteOrder bo, VectorMask<Double> m) { if (m.allTrue()) { intoByteArray(a, offset, bo); } else { // FIXME: optimize DoubleSpecies vsp = vspecies(); checkMaskFromIndexSize(offset, vsp, m, 8, a.length); ByteBuffer wb = wrapper(a, bo); this.stOp(wb, offset, m, (wb_, o, i, e) -> wb_.putDouble(o + i * 8, e)); } }
{@inheritDoc}
/** * {@inheritDoc} <!--workaround--> */
@Override @ForceInline public final void intoByteBuffer(ByteBuffer bb, int offset, ByteOrder bo) { if (bb.isReadOnly()) { throw new ReadOnlyBufferException(); } offset = checkFromIndexSize(offset, byteSize(), bb.limit()); maybeSwap(bo).intoByteBuffer0(bb, offset); }
{@inheritDoc}
/** * {@inheritDoc} <!--workaround--> */
@Override @ForceInline public final void intoByteBuffer(ByteBuffer bb, int offset, ByteOrder bo, VectorMask<Double> m) { if (m.allTrue()) { intoByteBuffer(bb, offset, bo); } else { // FIXME: optimize if (bb.isReadOnly()) { throw new ReadOnlyBufferException(); } DoubleSpecies vsp = vspecies(); checkMaskFromIndexSize(offset, vsp, m, 8, bb.limit()); ByteBuffer wb = wrapper(bb, bo); this.stOp(wb, offset, m, (wb_, o, i, e) -> wb_.putDouble(o + i * 8, e)); } } // ================================================ // Low-level memory operations. // // Note that all of these operations *must* inline into a context // where the exact species of the involved vector is a // compile-time constant. Otherwise, the intrinsic generation // will fail and performance will suffer. // // In many cases this is achieved by re-deriving a version of the // method in each concrete subclass (per species). The re-derived // method simply calls one of these generic methods, with exact // parameters for the controlling metadata, which is either a // typed vector or constant species instance. // Unchecked loading operations in native byte order. // Caller is responsible for applying index checks, masking, and // byte swapping. /*package-private*/ abstract DoubleVector fromArray0(double[] a, int offset); @ForceInline final DoubleVector fromArray0Template(double[] a, int offset) { DoubleSpecies vsp = vspecies(); return VectorSupport.load( vsp.vectorType(), vsp.elementType(), vsp.laneCount(), a, arrayAddress(a, offset), a, offset, vsp, (arr, off, s) -> s.ldOp(arr, off, (arr_, off_, i) -> arr_[off_ + i])); } @Override abstract DoubleVector fromByteArray0(byte[] a, int offset); @ForceInline final DoubleVector fromByteArray0Template(byte[] a, int offset) { DoubleSpecies vsp = vspecies(); return VectorSupport.load( vsp.vectorType(), vsp.elementType(), vsp.laneCount(), a, byteArrayAddress(a, offset), a, offset, vsp, (arr, off, s) -> { ByteBuffer wb = wrapper(arr, NATIVE_ENDIAN); return s.ldOp(wb, off, (wb_, o, i) -> wb_.getDouble(o + i * 8)); }); } abstract DoubleVector fromByteBuffer0(ByteBuffer bb, int offset); @ForceInline final DoubleVector fromByteBuffer0Template(ByteBuffer bb, int offset) { DoubleSpecies vsp = vspecies(); return VectorSupport.load( vsp.vectorType(), vsp.elementType(), vsp.laneCount(), bufferBase(bb), bufferAddress(bb, offset), bb, offset, vsp, (buf, off, s) -> { ByteBuffer wb = wrapper(buf, NATIVE_ENDIAN); return s.ldOp(wb, off, (wb_, o, i) -> wb_.getDouble(o + i * 8)); }); } // Unchecked storing operations in native byte order. // Caller is responsible for applying index checks, masking, and // byte swapping. abstract void intoArray0(double[] a, int offset); @ForceInline final void intoArray0Template(double[] a, int offset) { DoubleSpecies vsp = vspecies(); VectorSupport.store( vsp.vectorType(), vsp.elementType(), vsp.laneCount(), a, arrayAddress(a, offset), this, a, offset, (arr, off, v) -> v.stOp(arr, off, (arr_, off_, i, e) -> arr_[off_+i] = e)); } abstract void intoByteArray0(byte[] a, int offset); @ForceInline final void intoByteArray0Template(byte[] a, int offset) { DoubleSpecies vsp = vspecies(); VectorSupport.store( vsp.vectorType(), vsp.elementType(), vsp.laneCount(), a, byteArrayAddress(a, offset), this, a, offset, (arr, off, v) -> { ByteBuffer wb = wrapper(arr, NATIVE_ENDIAN); v.stOp(wb, off, (tb_, o, i, e) -> tb_.putDouble(o + i * 8, e)); }); } @ForceInline final void intoByteBuffer0(ByteBuffer bb, int offset) { DoubleSpecies vsp = vspecies(); VectorSupport.store( vsp.vectorType(), vsp.elementType(), vsp.laneCount(), bufferBase(bb), bufferAddress(bb, offset), this, bb, offset, (buf, off, v) -> { ByteBuffer wb = wrapper(buf, NATIVE_ENDIAN); v.stOp(wb, off, (wb_, o, i, e) -> wb_.putDouble(o + i * 8, e)); }); } // End of low-level memory operations. private static void checkMaskFromIndexSize(int offset, DoubleSpecies vsp, VectorMask<Double> m, int scale, int limit) { ((AbstractMask<Double>)m) .checkIndexByLane(offset, limit, vsp.iota(), scale); } @ForceInline private void conditionalStoreNYI(int offset, DoubleSpecies vsp, VectorMask<Double> m, int scale, int limit) { if (offset < 0 || offset + vsp.laneCount() * scale > limit) { String msg = String.format("unimplemented: store @%d in [0..%d), %s in %s", offset, limit, m, vsp); throw new AssertionError(msg); } } /*package-private*/ @Override @ForceInline final DoubleVector maybeSwap(ByteOrder bo) { if (bo != NATIVE_ENDIAN) { return this.reinterpretAsBytes() .rearrange(swapBytesShuffle()) .reinterpretAsDoubles(); } return this; } static final int ARRAY_SHIFT = 31 - Integer.numberOfLeadingZeros(Unsafe.ARRAY_DOUBLE_INDEX_SCALE); static final long ARRAY_BASE = Unsafe.ARRAY_DOUBLE_BASE_OFFSET; @ForceInline static long arrayAddress(double[] a, int index) { return ARRAY_BASE + (((long)index) << ARRAY_SHIFT); } @ForceInline static long byteArrayAddress(byte[] a, int index) { return Unsafe.ARRAY_BYTE_BASE_OFFSET + index; } // ================================================ /// Reinterpreting view methods: // lanewise reinterpret: viewAsXVector() // keep shape, redraw lanes: reinterpretAsEs()
{@inheritDoc}
/** * {@inheritDoc} <!--workaround--> */
@ForceInline @Override public final ByteVector reinterpretAsBytes() { // Going to ByteVector, pay close attention to byte order. assert(REGISTER_ENDIAN == ByteOrder.LITTLE_ENDIAN); return asByteVectorRaw(); //return asByteVectorRaw().rearrange(swapBytesShuffle()); }
{@inheritDoc}
/** * {@inheritDoc} <!--workaround--> */
@ForceInline @Override public final LongVector viewAsIntegralLanes() { LaneType ilt = LaneType.DOUBLE.asIntegral(); return (LongVector) asVectorRaw(ilt); }
{@inheritDoc}
/** * {@inheritDoc} <!--workaround--> */
@ForceInline @Override public final DoubleVector viewAsFloatingLanes() { return this; } // ================================================ /// Object methods: toString, equals, hashCode // // Object methods are defined as if via Arrays.toString, etc., // is applied to the array of elements. Two equal vectors // are required to have equal species and equal lane values.
Returns a string representation of this vector, of the form "[0,1,2...]", reporting the lane values of this vector, in lane order. The string is produced as if by a call to Arrays.toString(), as appropriate to the double array returned by this.toArray().
Returns:a string of the form "[0,1,2...]" reporting the lane values of this vector
/** * Returns a string representation of this vector, of the form * {@code "[0,1,2...]"}, reporting the lane values of this vector, * in lane order. * * The string is produced as if by a call to {@link * java.util.Arrays#toString(double[]) Arrays.toString()}, * as appropriate to the {@code double} array returned by * {@link #toArray this.toArray()}. * * @return a string of the form {@code "[0,1,2...]"} * reporting the lane values of this vector */
@Override @ForceInline public final String toString() { // now that toArray is strongly typed, we can define this return Arrays.toString(toArray()); }
{@inheritDoc}
/** * {@inheritDoc} <!--workaround--> */
@Override @ForceInline public final boolean equals(Object obj) { if (obj instanceof Vector) { Vector<?> that = (Vector<?>) obj; if (this.species().equals(that.species())) { return this.eq(that.check(this.species())).allTrue(); } } return false; }
{@inheritDoc}
/** * {@inheritDoc} <!--workaround--> */
@Override @ForceInline public final int hashCode() { // now that toArray is strongly typed, we can define this return Objects.hash(species(), Arrays.hashCode(toArray())); } // ================================================ // Species
Class representing DoubleVector's of the same VectorShape.
/** * Class representing {@link DoubleVector}'s of the same {@link VectorShape VectorShape}. */
/*package-private*/ static final class DoubleSpecies extends AbstractSpecies<Double> { private DoubleSpecies(VectorShape shape, Class<? extends DoubleVector> vectorType, Class<? extends AbstractMask<Double>> maskType, Function<Object, DoubleVector> vectorFactory) { super(shape, LaneType.of(double.class), vectorType, maskType, vectorFactory); assert(this.elementSize() == Double.SIZE); } // Specializing overrides: @Override @ForceInline public final Class<Double> elementType() { return double.class; } @Override @ForceInline final Class<Double> genericElementType() { return Double.class; } @SuppressWarnings("unchecked") @Override @ForceInline public final Class<? extends DoubleVector> vectorType() { return (Class<? extends DoubleVector>) vectorType; } @Override @ForceInline public final long checkValue(long e) { longToElementBits(e); // only for exception return e; } /*package-private*/ @Override @ForceInline final DoubleVector broadcastBits(long bits) { return (DoubleVector) VectorSupport.broadcastCoerced( vectorType, double.class, laneCount, bits, this, (bits_, s_) -> s_.rvOp(i -> bits_)); } /*package-private*/ @ForceInline final DoubleVector broadcast(double e) { return broadcastBits(toBits(e)); } @Override @ForceInline public final DoubleVector broadcast(long e) { return broadcastBits(longToElementBits(e)); } /*package-private*/ final @Override @ForceInline long longToElementBits(long value) { // Do the conversion, and then test it for failure. double e = (double) value; if ((long) e != value) { throw badElementBits(value, e); } return toBits(e); } /*package-private*/ @ForceInline static long toIntegralChecked(double e, boolean convertToInt) { long value = convertToInt ? (int) e : (long) e; if ((double) value != e) { throw badArrayBits(e, convertToInt, value); } return value; } /* this non-public one is for internal conversions */ @Override @ForceInline final DoubleVector fromIntValues(int[] values) { VectorIntrinsics.requireLength(values.length, laneCount); double[] va = new double[laneCount()]; for (int i = 0; i < va.length; i++) { int lv = values[i]; double v = (double) lv; va[i] = v; if ((int)v != lv) { throw badElementBits(lv, v); } } return dummyVector().fromArray0(va, 0); } // Virtual constructors @ForceInline @Override final public DoubleVector fromArray(Object a, int offset) { // User entry point: Be careful with inputs. return DoubleVector .fromArray(this, (double[]) a, offset); } @ForceInline @Override final DoubleVector dummyVector() { return (DoubleVector) super.dummyVector(); } /*package-private*/ final @Override @ForceInline DoubleVector rvOp(RVOp f) { double[] res = new double[laneCount()]; for (int i = 0; i < res.length; i++) { long bits = (long) f.apply(i); res[i] = fromBits(bits); } return dummyVector().vectorFactory(res); } DoubleVector vOp(FVOp f) { double[] res = new double[laneCount()]; for (int i = 0; i < res.length; i++) { res[i] = f.apply(i); } return dummyVector().vectorFactory(res); } DoubleVector vOp(VectorMask<Double> m, FVOp f) { double[] res = new double[laneCount()]; boolean[] mbits = ((AbstractMask<Double>)m).getBits(); for (int i = 0; i < res.length; i++) { if (mbits[i]) { res[i] = f.apply(i); } } return dummyVector().vectorFactory(res); } /*package-private*/ @ForceInline <M> DoubleVector ldOp(M memory, int offset, FLdOp<M> f) { return dummyVector().ldOp(memory, offset, f); } /*package-private*/ @ForceInline <M> DoubleVector ldOp(M memory, int offset, AbstractMask<Double> m, FLdOp<M> f) { return dummyVector().ldOp(memory, offset, m, f); } /*package-private*/ @ForceInline <M> void stOp(M memory, int offset, FStOp<M> f) { dummyVector().stOp(memory, offset, f); } /*package-private*/ @ForceInline <M> void stOp(M memory, int offset, AbstractMask<Double> m, FStOp<M> f) { dummyVector().stOp(memory, offset, m, f); } // N.B. Make sure these constant vectors and // masks load up correctly into registers. // // Also, see if we can avoid all that switching. // Could we cache both vectors and both masks in // this species object? // Zero and iota vector access @Override @ForceInline public final DoubleVector zero() { if ((Class<?>) vectorType() == DoubleMaxVector.class) return DoubleMaxVector.ZERO; switch (vectorBitSize()) { case 64: return Double64Vector.ZERO; case 128: return Double128Vector.ZERO; case 256: return Double256Vector.ZERO; case 512: return Double512Vector.ZERO; } throw new AssertionError(); } @Override @ForceInline public final DoubleVector iota() { if ((Class<?>) vectorType() == DoubleMaxVector.class) return DoubleMaxVector.IOTA; switch (vectorBitSize()) { case 64: return Double64Vector.IOTA; case 128: return Double128Vector.IOTA; case 256: return Double256Vector.IOTA; case 512: return Double512Vector.IOTA; } throw new AssertionError(); } // Mask access @Override @ForceInline public final VectorMask<Double> maskAll(boolean bit) { if ((Class<?>) vectorType() == DoubleMaxVector.class) return DoubleMaxVector.DoubleMaxMask.maskAll(bit); switch (vectorBitSize()) { case 64: return Double64Vector.Double64Mask.maskAll(bit); case 128: return Double128Vector.Double128Mask.maskAll(bit); case 256: return Double256Vector.Double256Mask.maskAll(bit); case 512: return Double512Vector.Double512Mask.maskAll(bit); } throw new AssertionError(); } }
Finds a species for an element type of double and shape.
Params:
  • s – the shape
Throws:
Returns:a species for an element type of double and shape
/** * Finds a species for an element type of {@code double} and shape. * * @param s the shape * @return a species for an element type of {@code double} and shape * @throws IllegalArgumentException if no such species exists for the shape */
static DoubleSpecies species(VectorShape s) { Objects.requireNonNull(s); switch (s) { case S_64_BIT: return (DoubleSpecies) SPECIES_64; case S_128_BIT: return (DoubleSpecies) SPECIES_128; case S_256_BIT: return (DoubleSpecies) SPECIES_256; case S_512_BIT: return (DoubleSpecies) SPECIES_512; case S_Max_BIT: return (DoubleSpecies) SPECIES_MAX; default: throw new IllegalArgumentException("Bad shape: " + s); } }
Species representing DoubleVectors of VectorShape.S_64_BIT.
/** Species representing {@link DoubleVector}s of {@link VectorShape#S_64_BIT VectorShape.S_64_BIT}. */
public static final VectorSpecies<Double> SPECIES_64 = new DoubleSpecies(VectorShape.S_64_BIT, Double64Vector.class, Double64Vector.Double64Mask.class, Double64Vector::new);
Species representing DoubleVectors of VectorShape.S_128_BIT.
/** Species representing {@link DoubleVector}s of {@link VectorShape#S_128_BIT VectorShape.S_128_BIT}. */
public static final VectorSpecies<Double> SPECIES_128 = new DoubleSpecies(VectorShape.S_128_BIT, Double128Vector.class, Double128Vector.Double128Mask.class, Double128Vector::new);
Species representing DoubleVectors of VectorShape.S_256_BIT.
/** Species representing {@link DoubleVector}s of {@link VectorShape#S_256_BIT VectorShape.S_256_BIT}. */
public static final VectorSpecies<Double> SPECIES_256 = new DoubleSpecies(VectorShape.S_256_BIT, Double256Vector.class, Double256Vector.Double256Mask.class, Double256Vector::new);
Species representing DoubleVectors of VectorShape.S_512_BIT.
/** Species representing {@link DoubleVector}s of {@link VectorShape#S_512_BIT VectorShape.S_512_BIT}. */
public static final VectorSpecies<Double> SPECIES_512 = new DoubleSpecies(VectorShape.S_512_BIT, Double512Vector.class, Double512Vector.Double512Mask.class, Double512Vector::new);
Species representing DoubleVectors of VectorShape.S_Max_BIT.
/** Species representing {@link DoubleVector}s of {@link VectorShape#S_Max_BIT VectorShape.S_Max_BIT}. */
public static final VectorSpecies<Double> SPECIES_MAX = new DoubleSpecies(VectorShape.S_Max_BIT, DoubleMaxVector.class, DoubleMaxVector.DoubleMaxMask.class, DoubleMaxVector::new);
Preferred species for DoubleVectors. A preferred species is a species of maximal bit-size for the platform.
/** * Preferred species for {@link DoubleVector}s. * A preferred species is a species of maximal bit-size for the platform. */
public static final VectorSpecies<Double> SPECIES_PREFERRED = (DoubleSpecies) VectorSpecies.ofPreferred(double.class); }