/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/publicdomain/zero/1.0/
*/
package java.util.concurrent.locks;
import java.util.Collection;
import java.util.concurrent.TimeUnit;
import jdk.internal.vm.annotation.ReservedStackAccess;
A reentrant mutual exclusion Lock
with the same basic behavior and semantics as the implicit monitor lock accessed using synchronized
methods and statements, but with extended capabilities. A ReentrantLock
is owned by the thread last successfully locking, but not yet unlocking it. A thread invoking lock
will return, successfully acquiring the lock, when the lock is not owned by another thread. The method will return immediately if the current thread already owns the lock. This can be checked using methods isHeldByCurrentThread
, and getHoldCount
.
The constructor for this class accepts an optional
fairness parameter. When set true
, under contention, locks favor granting access to the longest-waiting thread. Otherwise this lock does not guarantee any particular access order. Programs using fair locks accessed by many threads may display lower overall throughput (i.e., are slower; often much slower) than those using the default setting, but have smaller variances in times to obtain locks and guarantee lack of starvation. Note however, that fairness of locks does not guarantee fairness of thread scheduling. Thus, one of many threads using a fair lock may obtain it multiple times in succession while other active threads are not progressing and not currently holding the lock. Also note that the untimed tryLock()
method does not honor the fairness setting. It will succeed if the lock is available even if other threads are waiting.
It is recommended practice to always immediately follow a call to lock
with a try
block, most typically in a before/after construction such as:
class X {
private final ReentrantLock lock = new ReentrantLock();
// ...
public void m() {
lock.lock(); // block until condition holds
try {
// ... method body
} finally {
lock.unlock();
}
}
}
In addition to implementing the Lock
interface, this class defines a number of public
and protected
methods for inspecting the state of the lock. Some of these methods are only useful for instrumentation and monitoring.
Serialization of this class behaves in the same way as built-in
locks: a deserialized lock is in the unlocked state, regardless of
its state when serialized.
This lock supports a maximum of 2147483647 recursive locks by the same thread. Attempts to exceed this limit result in Error
throws from locking methods.
Author: Doug Lea Since: 1.5
/**
* A reentrant mutual exclusion {@link Lock} with the same basic
* behavior and semantics as the implicit monitor lock accessed using
* {@code synchronized} methods and statements, but with extended
* capabilities.
*
* <p>A {@code ReentrantLock} is <em>owned</em> by the thread last
* successfully locking, but not yet unlocking it. A thread invoking
* {@code lock} will return, successfully acquiring the lock, when
* the lock is not owned by another thread. The method will return
* immediately if the current thread already owns the lock. This can
* be checked using methods {@link #isHeldByCurrentThread}, and {@link
* #getHoldCount}.
*
* <p>The constructor for this class accepts an optional
* <em>fairness</em> parameter. When set {@code true}, under
* contention, locks favor granting access to the longest-waiting
* thread. Otherwise this lock does not guarantee any particular
* access order. Programs using fair locks accessed by many threads
* may display lower overall throughput (i.e., are slower; often much
* slower) than those using the default setting, but have smaller
* variances in times to obtain locks and guarantee lack of
* starvation. Note however, that fairness of locks does not guarantee
* fairness of thread scheduling. Thus, one of many threads using a
* fair lock may obtain it multiple times in succession while other
* active threads are not progressing and not currently holding the
* lock.
* Also note that the untimed {@link #tryLock()} method does not
* honor the fairness setting. It will succeed if the lock
* is available even if other threads are waiting.
*
* <p>It is recommended practice to <em>always</em> immediately
* follow a call to {@code lock} with a {@code try} block, most
* typically in a before/after construction such as:
*
* <pre> {@code
* class X {
* private final ReentrantLock lock = new ReentrantLock();
* // ...
*
* public void m() {
* lock.lock(); // block until condition holds
* try {
* // ... method body
* } finally {
* lock.unlock();
* }
* }
* }}</pre>
*
* <p>In addition to implementing the {@link Lock} interface, this
* class defines a number of {@code public} and {@code protected}
* methods for inspecting the state of the lock. Some of these
* methods are only useful for instrumentation and monitoring.
*
* <p>Serialization of this class behaves in the same way as built-in
* locks: a deserialized lock is in the unlocked state, regardless of
* its state when serialized.
*
* <p>This lock supports a maximum of 2147483647 recursive locks by
* the same thread. Attempts to exceed this limit result in
* {@link Error} throws from locking methods.
*
* @since 1.5
* @author Doug Lea
*/
public class ReentrantLock implements Lock, java.io.Serializable {
private static final long serialVersionUID = 7373984872572414699L;
Synchronizer providing all implementation mechanics /** Synchronizer providing all implementation mechanics */
private final Sync sync;
Base of synchronization control for this lock. Subclassed
into fair and nonfair versions below. Uses AQS state to
represent the number of holds on the lock.
/**
* Base of synchronization control for this lock. Subclassed
* into fair and nonfair versions below. Uses AQS state to
* represent the number of holds on the lock.
*/
abstract static class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = -5179523762034025860L;
Performs non-fair tryLock.
/**
* Performs non-fair tryLock.
*/
@ReservedStackAccess
final boolean tryLock() {
Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (compareAndSetState(0, 1)) {
setExclusiveOwnerThread(current);
return true;
}
} else if (getExclusiveOwnerThread() == current) {
if (++c < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(c);
return true;
}
return false;
}
Checks for reentrancy and acquires if lock immediately
available under fair vs nonfair rules. Locking methods
perform initialTryLock check before relaying to
corresponding AQS acquire methods.
/**
* Checks for reentrancy and acquires if lock immediately
* available under fair vs nonfair rules. Locking methods
* perform initialTryLock check before relaying to
* corresponding AQS acquire methods.
*/
abstract boolean initialTryLock();
@ReservedStackAccess
final void lock() {
if (!initialTryLock())
acquire(1);
}
@ReservedStackAccess
final void lockInterruptibly() throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
if (!initialTryLock())
acquireInterruptibly(1);
}
@ReservedStackAccess
final boolean tryLockNanos(long nanos) throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
return initialTryLock() || tryAcquireNanos(1, nanos);
}
@ReservedStackAccess
protected final boolean tryRelease(int releases) {
int c = getState() - releases;
if (getExclusiveOwnerThread() != Thread.currentThread())
throw new IllegalMonitorStateException();
boolean free = (c == 0);
if (free)
setExclusiveOwnerThread(null);
setState(c);
return free;
}
protected final boolean isHeldExclusively() {
// While we must in general read state before owner,
// we don't need to do so to check if current thread is owner
return getExclusiveOwnerThread() == Thread.currentThread();
}
final ConditionObject newCondition() {
return new ConditionObject();
}
// Methods relayed from outer class
final Thread getOwner() {
return getState() == 0 ? null : getExclusiveOwnerThread();
}
final int getHoldCount() {
return isHeldExclusively() ? getState() : 0;
}
final boolean isLocked() {
return getState() != 0;
}
Reconstitutes the instance from a stream (that is, deserializes it).
/**
* Reconstitutes the instance from a stream (that is, deserializes it).
*/
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
setState(0); // reset to unlocked state
}
}
Sync object for non-fair locks
/**
* Sync object for non-fair locks
*/
static final class NonfairSync extends Sync {
private static final long serialVersionUID = 7316153563782823691L;
final boolean initialTryLock() {
Thread current = Thread.currentThread();
if (compareAndSetState(0, 1)) { // first attempt is unguarded
setExclusiveOwnerThread(current);
return true;
} else if (getExclusiveOwnerThread() == current) {
int c = getState() + 1;
if (c < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(c);
return true;
} else
return false;
}
Acquire for non-reentrant cases after initialTryLock prescreen
/**
* Acquire for non-reentrant cases after initialTryLock prescreen
*/
protected final boolean tryAcquire(int acquires) {
if (getState() == 0 && compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(Thread.currentThread());
return true;
}
return false;
}
}
Sync object for fair locks
/**
* Sync object for fair locks
*/
static final class FairSync extends Sync {
private static final long serialVersionUID = -3000897897090466540L;
Acquires only if reentrant or queue is empty.
/**
* Acquires only if reentrant or queue is empty.
*/
final boolean initialTryLock() {
Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (!hasQueuedThreads() && compareAndSetState(0, 1)) {
setExclusiveOwnerThread(current);
return true;
}
} else if (getExclusiveOwnerThread() == current) {
if (++c < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(c);
return true;
}
return false;
}
Acquires only if thread is first waiter or empty
/**
* Acquires only if thread is first waiter or empty
*/
protected final boolean tryAcquire(int acquires) {
if (getState() == 0 && !hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(Thread.currentThread());
return true;
}
return false;
}
}
Creates an instance of ReentrantLock
. This is equivalent to using ReentrantLock(false)
. /**
* Creates an instance of {@code ReentrantLock}.
* This is equivalent to using {@code ReentrantLock(false)}.
*/
public ReentrantLock() {
sync = new NonfairSync();
}
Creates an instance of ReentrantLock
with the given fairness policy. Params: - fair –
true
if this lock should use a fair ordering policy
/**
* Creates an instance of {@code ReentrantLock} with the
* given fairness policy.
*
* @param fair {@code true} if this lock should use a fair ordering policy
*/
public ReentrantLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
}
Acquires the lock.
Acquires the lock if it is not held by another thread and returns
immediately, setting the lock hold count to one.
If the current thread already holds the lock then the hold
count is incremented by one and the method returns immediately.
If the lock is held by another thread then the
current thread becomes disabled for thread scheduling
purposes and lies dormant until the lock has been acquired,
at which time the lock hold count is set to one.
/**
* Acquires the lock.
*
* <p>Acquires the lock if it is not held by another thread and returns
* immediately, setting the lock hold count to one.
*
* <p>If the current thread already holds the lock then the hold
* count is incremented by one and the method returns immediately.
*
* <p>If the lock is held by another thread then the
* current thread becomes disabled for thread scheduling
* purposes and lies dormant until the lock has been acquired,
* at which time the lock hold count is set to one.
*/
public void lock() {
sync.lock();
}
Acquires the lock unless the current thread is interrupted. Acquires the lock if it is not held by another thread and returns
immediately, setting the lock hold count to one.
If the current thread already holds this lock then the hold count
is incremented by one and the method returns immediately.
If the lock is held by another thread then the
current thread becomes disabled for thread scheduling
purposes and lies dormant until one of two things happens:
- The lock is acquired by the current thread; or
- Some other thread interrupts the current thread.
If the lock is acquired by the current thread then the lock hold
count is set to one.
If the current thread:
- has its interrupted status set on entry to this method; or
- is interrupted while acquiring the lock,
then InterruptedException
is thrown and the current thread's interrupted status is cleared. In this implementation, as this method is an explicit
interruption point, preference is given to responding to the
interrupt over normal or reentrant acquisition of the lock.
Throws: - InterruptedException – if the current thread is interrupted
/**
* Acquires the lock unless the current thread is
* {@linkplain Thread#interrupt interrupted}.
*
* <p>Acquires the lock if it is not held by another thread and returns
* immediately, setting the lock hold count to one.
*
* <p>If the current thread already holds this lock then the hold count
* is incremented by one and the method returns immediately.
*
* <p>If the lock is held by another thread then the
* current thread becomes disabled for thread scheduling
* purposes and lies dormant until one of two things happens:
*
* <ul>
*
* <li>The lock is acquired by the current thread; or
*
* <li>Some other thread {@linkplain Thread#interrupt interrupts} the
* current thread.
*
* </ul>
*
* <p>If the lock is acquired by the current thread then the lock hold
* count is set to one.
*
* <p>If the current thread:
*
* <ul>
*
* <li>has its interrupted status set on entry to this method; or
*
* <li>is {@linkplain Thread#interrupt interrupted} while acquiring
* the lock,
*
* </ul>
*
* then {@link InterruptedException} is thrown and the current thread's
* interrupted status is cleared.
*
* <p>In this implementation, as this method is an explicit
* interruption point, preference is given to responding to the
* interrupt over normal or reentrant acquisition of the lock.
*
* @throws InterruptedException if the current thread is interrupted
*/
public void lockInterruptibly() throws InterruptedException {
sync.lockInterruptibly();
}
Acquires the lock only if it is not held by another thread at the time
of invocation.
Acquires the lock if it is not held by another thread and returns immediately with the value true
, setting the lock hold count to one. Even when this lock has been set to use a fair ordering policy, a call to tryLock()
will immediately acquire the lock if it is available, whether or not other threads are currently waiting for the lock. This "barging" behavior can be useful in certain circumstances, even though it breaks fairness. If you want to honor the fairness setting for this lock, then use tryLock(0, TimeUnit.SECONDS)
which is almost equivalent (it also detects interruption).
If the current thread already holds this lock then the hold count is incremented by one and the method returns true
.
If the lock is held by another thread then this method will return immediately with the value false
.
Returns: true
if the lock was free and was acquired by the current thread, or the lock was already held by the current thread; and false
otherwise
/**
* Acquires the lock only if it is not held by another thread at the time
* of invocation.
*
* <p>Acquires the lock if it is not held by another thread and
* returns immediately with the value {@code true}, setting the
* lock hold count to one. Even when this lock has been set to use a
* fair ordering policy, a call to {@code tryLock()} <em>will</em>
* immediately acquire the lock if it is available, whether or not
* other threads are currently waiting for the lock.
* This "barging" behavior can be useful in certain
* circumstances, even though it breaks fairness. If you want to honor
* the fairness setting for this lock, then use
* {@link #tryLock(long, TimeUnit) tryLock(0, TimeUnit.SECONDS)}
* which is almost equivalent (it also detects interruption).
*
* <p>If the current thread already holds this lock then the hold
* count is incremented by one and the method returns {@code true}.
*
* <p>If the lock is held by another thread then this method will return
* immediately with the value {@code false}.
*
* @return {@code true} if the lock was free and was acquired by the
* current thread, or the lock was already held by the current
* thread; and {@code false} otherwise
*/
public boolean tryLock() {
return sync.tryLock();
}
Acquires the lock if it is not held by another thread within the given waiting time and the current thread has not been interrupted. Acquires the lock if it is not held by another thread and returns immediately with the value true
, setting the lock hold count to one. If this lock has been set to use a fair ordering policy then an available lock will not be acquired if any other threads are waiting for the lock. This is in contrast to the tryLock()
method. If you want a timed tryLock
that does permit barging on a fair lock then combine the timed and un-timed forms together:
if (lock.tryLock() ||
lock.tryLock(timeout, unit)) {
...
}
If the current thread already holds this lock then the hold count is incremented by one and the method returns true
.
If the lock is held by another thread then the
current thread becomes disabled for thread scheduling
purposes and lies dormant until one of three things happens:
- The lock is acquired by the current thread; or
- Some other thread interrupts the current thread; or
- The specified waiting time elapses
If the lock is acquired then the value true
is returned and the lock hold count is set to one.
If the current thread:
- has its interrupted status set on entry to this method; or
- is interrupted while acquiring the lock,
then InterruptedException
is thrown and the current thread's interrupted status is cleared. If the specified waiting time elapses then the value false
is returned. If the time is less than or equal to zero, the method will not wait at all.
In this implementation, as this method is an explicit
interruption point, preference is given to responding to the
interrupt over normal or reentrant acquisition of the lock, and
over reporting the elapse of the waiting time.
Params: - timeout – the time to wait for the lock
- unit – the time unit of the timeout argument
Throws: - InterruptedException – if the current thread is interrupted
- NullPointerException – if the time unit is null
Returns: true
if the lock was free and was acquired by the current thread, or the lock was already held by the current thread; and false
if the waiting time elapsed before the lock could be acquired
/**
* Acquires the lock if it is not held by another thread within the given
* waiting time and the current thread has not been
* {@linkplain Thread#interrupt interrupted}.
*
* <p>Acquires the lock if it is not held by another thread and returns
* immediately with the value {@code true}, setting the lock hold count
* to one. If this lock has been set to use a fair ordering policy then
* an available lock <em>will not</em> be acquired if any other threads
* are waiting for the lock. This is in contrast to the {@link #tryLock()}
* method. If you want a timed {@code tryLock} that does permit barging on
* a fair lock then combine the timed and un-timed forms together:
*
* <pre> {@code
* if (lock.tryLock() ||
* lock.tryLock(timeout, unit)) {
* ...
* }}</pre>
*
* <p>If the current thread
* already holds this lock then the hold count is incremented by one and
* the method returns {@code true}.
*
* <p>If the lock is held by another thread then the
* current thread becomes disabled for thread scheduling
* purposes and lies dormant until one of three things happens:
*
* <ul>
*
* <li>The lock is acquired by the current thread; or
*
* <li>Some other thread {@linkplain Thread#interrupt interrupts}
* the current thread; or
*
* <li>The specified waiting time elapses
*
* </ul>
*
* <p>If the lock is acquired then the value {@code true} is returned and
* the lock hold count is set to one.
*
* <p>If the current thread:
*
* <ul>
*
* <li>has its interrupted status set on entry to this method; or
*
* <li>is {@linkplain Thread#interrupt interrupted} while
* acquiring the lock,
*
* </ul>
* then {@link InterruptedException} is thrown and the current thread's
* interrupted status is cleared.
*
* <p>If the specified waiting time elapses then the value {@code false}
* is returned. If the time is less than or equal to zero, the method
* will not wait at all.
*
* <p>In this implementation, as this method is an explicit
* interruption point, preference is given to responding to the
* interrupt over normal or reentrant acquisition of the lock, and
* over reporting the elapse of the waiting time.
*
* @param timeout the time to wait for the lock
* @param unit the time unit of the timeout argument
* @return {@code true} if the lock was free and was acquired by the
* current thread, or the lock was already held by the current
* thread; and {@code false} if the waiting time elapsed before
* the lock could be acquired
* @throws InterruptedException if the current thread is interrupted
* @throws NullPointerException if the time unit is null
*/
public boolean tryLock(long timeout, TimeUnit unit)
throws InterruptedException {
return sync.tryLockNanos(unit.toNanos(timeout));
}
Attempts to release this lock.
If the current thread is the holder of this lock then the hold count is decremented. If the hold count is now zero then the lock is released. If the current thread is not the holder of this lock then IllegalMonitorStateException
is thrown.
Throws: - IllegalMonitorStateException – if the current thread does not
hold this lock
/**
* Attempts to release this lock.
*
* <p>If the current thread is the holder of this lock then the hold
* count is decremented. If the hold count is now zero then the lock
* is released. If the current thread is not the holder of this
* lock then {@link IllegalMonitorStateException} is thrown.
*
* @throws IllegalMonitorStateException if the current thread does not
* hold this lock
*/
public void unlock() {
sync.release(1);
}
Returns a Condition
instance for use with this Lock
instance. The returned Condition
instance supports the same usages as do the Object
monitor methods (wait
, notify
, and notifyAll
) when used with the built-in monitor lock.
- If this lock is not held when any of the
Condition
waiting or signalling methods are called, then an IllegalMonitorStateException
is thrown. - When the condition waiting methods are called the lock is released and, before they return, the lock is reacquired and the lock hold count restored to what it was when the method was called.
- If a thread is interrupted while waiting then the wait will terminate, an
InterruptedException
will be thrown, and the thread's interrupted status will be cleared. - Waiting threads are signalled in FIFO order.
- The ordering of lock reacquisition for threads returning
from waiting methods is the same as for threads initially
acquiring the lock, which is in the default case not specified,
but for fair locks favors those threads that have been
waiting the longest.
Returns: the Condition object
/**
* Returns a {@link Condition} instance for use with this
* {@link Lock} instance.
*
* <p>The returned {@link Condition} instance supports the same
* usages as do the {@link Object} monitor methods ({@link
* Object#wait() wait}, {@link Object#notify notify}, and {@link
* Object#notifyAll notifyAll}) when used with the built-in
* monitor lock.
*
* <ul>
*
* <li>If this lock is not held when any of the {@link Condition}
* {@linkplain Condition#await() waiting} or {@linkplain
* Condition#signal signalling} methods are called, then an {@link
* IllegalMonitorStateException} is thrown.
*
* <li>When the condition {@linkplain Condition#await() waiting}
* methods are called the lock is released and, before they
* return, the lock is reacquired and the lock hold count restored
* to what it was when the method was called.
*
* <li>If a thread is {@linkplain Thread#interrupt interrupted}
* while waiting then the wait will terminate, an {@link
* InterruptedException} will be thrown, and the thread's
* interrupted status will be cleared.
*
* <li>Waiting threads are signalled in FIFO order.
*
* <li>The ordering of lock reacquisition for threads returning
* from waiting methods is the same as for threads initially
* acquiring the lock, which is in the default case not specified,
* but for <em>fair</em> locks favors those threads that have been
* waiting the longest.
*
* </ul>
*
* @return the Condition object
*/
public Condition newCondition() {
return sync.newCondition();
}
Queries the number of holds on this lock by the current thread.
A thread has a hold on a lock for each lock action that is not
matched by an unlock action.
The hold count information is typically only used for testing and
debugging purposes. For example, if a certain section of code should
not be entered with the lock already held then we can assert that
fact:
class X {
final ReentrantLock lock = new ReentrantLock();
// ...
public void m() {
assert lock.getHoldCount() == 0;
lock.lock();
try {
// ... method body
} finally {
lock.unlock();
}
}
}
Returns: the number of holds on this lock by the current thread,
or zero if this lock is not held by the current thread
/**
* Queries the number of holds on this lock by the current thread.
*
* <p>A thread has a hold on a lock for each lock action that is not
* matched by an unlock action.
*
* <p>The hold count information is typically only used for testing and
* debugging purposes. For example, if a certain section of code should
* not be entered with the lock already held then we can assert that
* fact:
*
* <pre> {@code
* class X {
* final ReentrantLock lock = new ReentrantLock();
* // ...
* public void m() {
* assert lock.getHoldCount() == 0;
* lock.lock();
* try {
* // ... method body
* } finally {
* lock.unlock();
* }
* }
* }}</pre>
*
* @return the number of holds on this lock by the current thread,
* or zero if this lock is not held by the current thread
*/
public int getHoldCount() {
return sync.getHoldCount();
}
Queries if this lock is held by the current thread.
Analogous to the Thread.holdsLock(Object)
method for built-in monitor locks, this method is typically used for debugging and testing. For example, a method that should only be called while a lock is held can assert that this is the case:
class X {
final ReentrantLock lock = new ReentrantLock();
// ...
public void m() {
assert lock.isHeldByCurrentThread();
// ... method body
}
}
It can also be used to ensure that a reentrant lock is used
in a non-reentrant manner, for example:
class X {
final ReentrantLock lock = new ReentrantLock();
// ...
public void m() {
assert !lock.isHeldByCurrentThread();
lock.lock();
try {
// ... method body
} finally {
lock.unlock();
}
}
}
Returns: true
if current thread holds this lock and false
otherwise
/**
* Queries if this lock is held by the current thread.
*
* <p>Analogous to the {@link Thread#holdsLock(Object)} method for
* built-in monitor locks, this method is typically used for
* debugging and testing. For example, a method that should only be
* called while a lock is held can assert that this is the case:
*
* <pre> {@code
* class X {
* final ReentrantLock lock = new ReentrantLock();
* // ...
*
* public void m() {
* assert lock.isHeldByCurrentThread();
* // ... method body
* }
* }}</pre>
*
* <p>It can also be used to ensure that a reentrant lock is used
* in a non-reentrant manner, for example:
*
* <pre> {@code
* class X {
* final ReentrantLock lock = new ReentrantLock();
* // ...
*
* public void m() {
* assert !lock.isHeldByCurrentThread();
* lock.lock();
* try {
* // ... method body
* } finally {
* lock.unlock();
* }
* }
* }}</pre>
*
* @return {@code true} if current thread holds this lock and
* {@code false} otherwise
*/
public boolean isHeldByCurrentThread() {
return sync.isHeldExclusively();
}
Queries if this lock is held by any thread. This method is
designed for use in monitoring of the system state,
not for synchronization control.
Returns: true
if any thread holds this lock and false
otherwise
/**
* Queries if this lock is held by any thread. This method is
* designed for use in monitoring of the system state,
* not for synchronization control.
*
* @return {@code true} if any thread holds this lock and
* {@code false} otherwise
*/
public boolean isLocked() {
return sync.isLocked();
}
Returns true
if this lock has fairness set true. Returns: true
if this lock has fairness set true
/**
* Returns {@code true} if this lock has fairness set true.
*
* @return {@code true} if this lock has fairness set true
*/
public final boolean isFair() {
return sync instanceof FairSync;
}
Returns the thread that currently owns this lock, or null
if not owned. When this method is called by a thread that is not the owner, the return value reflects a best-effort approximation of current lock status. For example, the owner may be momentarily null
even if there are threads trying to acquire the lock but have not yet done so. This method is designed to facilitate construction of subclasses that provide more extensive lock monitoring facilities. Returns: the owner, or null
if not owned
/**
* Returns the thread that currently owns this lock, or
* {@code null} if not owned. When this method is called by a
* thread that is not the owner, the return value reflects a
* best-effort approximation of current lock status. For example,
* the owner may be momentarily {@code null} even if there are
* threads trying to acquire the lock but have not yet done so.
* This method is designed to facilitate construction of
* subclasses that provide more extensive lock monitoring
* facilities.
*
* @return the owner, or {@code null} if not owned
*/
protected Thread getOwner() {
return sync.getOwner();
}
Queries whether any threads are waiting to acquire this lock. Note that because cancellations may occur at any time, a true
return does not guarantee that any other thread will ever acquire this lock. This method is designed primarily for use in monitoring of the system state. Returns: true
if there may be other threads waiting to acquire the lock
/**
* Queries whether any threads are waiting to acquire this lock. Note that
* because cancellations may occur at any time, a {@code true}
* return does not guarantee that any other thread will ever
* acquire this lock. This method is designed primarily for use in
* monitoring of the system state.
*
* @return {@code true} if there may be other threads waiting to
* acquire the lock
*/
public final boolean hasQueuedThreads() {
return sync.hasQueuedThreads();
}
Queries whether the given thread is waiting to acquire this lock. Note that because cancellations may occur at any time, a true
return does not guarantee that this thread will ever acquire this lock. This method is designed primarily for use in monitoring of the system state. Params: - thread – the thread
Throws: - NullPointerException – if the thread is null
Returns: true
if the given thread is queued waiting for this lock
/**
* Queries whether the given thread is waiting to acquire this
* lock. Note that because cancellations may occur at any time, a
* {@code true} return does not guarantee that this thread
* will ever acquire this lock. This method is designed primarily for use
* in monitoring of the system state.
*
* @param thread the thread
* @return {@code true} if the given thread is queued waiting for this lock
* @throws NullPointerException if the thread is null
*/
public final boolean hasQueuedThread(Thread thread) {
return sync.isQueued(thread);
}
Returns an estimate of the number of threads waiting to acquire
this lock. The value is only an estimate because the number of
threads may change dynamically while this method traverses
internal data structures. This method is designed for use in
monitoring system state, not for synchronization control.
Returns: the estimated number of threads waiting for this lock
/**
* Returns an estimate of the number of threads waiting to acquire
* this lock. The value is only an estimate because the number of
* threads may change dynamically while this method traverses
* internal data structures. This method is designed for use in
* monitoring system state, not for synchronization control.
*
* @return the estimated number of threads waiting for this lock
*/
public final int getQueueLength() {
return sync.getQueueLength();
}
Returns a collection containing threads that may be waiting to
acquire this lock. Because the actual set of threads may change
dynamically while constructing this result, the returned
collection is only a best-effort estimate. The elements of the
returned collection are in no particular order. This method is
designed to facilitate construction of subclasses that provide
more extensive monitoring facilities.
Returns: the collection of threads
/**
* Returns a collection containing threads that may be waiting to
* acquire this lock. Because the actual set of threads may change
* dynamically while constructing this result, the returned
* collection is only a best-effort estimate. The elements of the
* returned collection are in no particular order. This method is
* designed to facilitate construction of subclasses that provide
* more extensive monitoring facilities.
*
* @return the collection of threads
*/
protected Collection<Thread> getQueuedThreads() {
return sync.getQueuedThreads();
}
Queries whether any threads are waiting on the given condition associated with this lock. Note that because timeouts and interrupts may occur at any time, a true
return does not guarantee that a future signal
will awaken any threads. This method is designed primarily for use in monitoring of the system state. Params: - condition – the condition
Throws: - IllegalMonitorStateException – if this lock is not held
- IllegalArgumentException – if the given condition is
not associated with this lock
- NullPointerException – if the condition is null
Returns: true
if there are any waiting threads
/**
* Queries whether any threads are waiting on the given condition
* associated with this lock. Note that because timeouts and
* interrupts may occur at any time, a {@code true} return does
* not guarantee that a future {@code signal} will awaken any
* threads. This method is designed primarily for use in
* monitoring of the system state.
*
* @param condition the condition
* @return {@code true} if there are any waiting threads
* @throws IllegalMonitorStateException if this lock is not held
* @throws IllegalArgumentException if the given condition is
* not associated with this lock
* @throws NullPointerException if the condition is null
*/
public boolean hasWaiters(Condition condition) {
if (condition == null)
throw new NullPointerException();
if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
throw new IllegalArgumentException("not owner");
return sync.hasWaiters((AbstractQueuedSynchronizer.ConditionObject)condition);
}
Returns an estimate of the number of threads waiting on the
given condition associated with this lock. Note that because
timeouts and interrupts may occur at any time, the estimate
serves only as an upper bound on the actual number of waiters.
This method is designed for use in monitoring of the system
state, not for synchronization control.
Params: - condition – the condition
Throws: - IllegalMonitorStateException – if this lock is not held
- IllegalArgumentException – if the given condition is
not associated with this lock
- NullPointerException – if the condition is null
Returns: the estimated number of waiting threads
/**
* Returns an estimate of the number of threads waiting on the
* given condition associated with this lock. Note that because
* timeouts and interrupts may occur at any time, the estimate
* serves only as an upper bound on the actual number of waiters.
* This method is designed for use in monitoring of the system
* state, not for synchronization control.
*
* @param condition the condition
* @return the estimated number of waiting threads
* @throws IllegalMonitorStateException if this lock is not held
* @throws IllegalArgumentException if the given condition is
* not associated with this lock
* @throws NullPointerException if the condition is null
*/
public int getWaitQueueLength(Condition condition) {
if (condition == null)
throw new NullPointerException();
if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
throw new IllegalArgumentException("not owner");
return sync.getWaitQueueLength((AbstractQueuedSynchronizer.ConditionObject)condition);
}
Returns a collection containing those threads that may be
waiting on the given condition associated with this lock.
Because the actual set of threads may change dynamically while
constructing this result, the returned collection is only a
best-effort estimate. The elements of the returned collection
are in no particular order. This method is designed to
facilitate construction of subclasses that provide more
extensive condition monitoring facilities.
Params: - condition – the condition
Throws: - IllegalMonitorStateException – if this lock is not held
- IllegalArgumentException – if the given condition is
not associated with this lock
- NullPointerException – if the condition is null
Returns: the collection of threads
/**
* Returns a collection containing those threads that may be
* waiting on the given condition associated with this lock.
* Because the actual set of threads may change dynamically while
* constructing this result, the returned collection is only a
* best-effort estimate. The elements of the returned collection
* are in no particular order. This method is designed to
* facilitate construction of subclasses that provide more
* extensive condition monitoring facilities.
*
* @param condition the condition
* @return the collection of threads
* @throws IllegalMonitorStateException if this lock is not held
* @throws IllegalArgumentException if the given condition is
* not associated with this lock
* @throws NullPointerException if the condition is null
*/
protected Collection<Thread> getWaitingThreads(Condition condition) {
if (condition == null)
throw new NullPointerException();
if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
throw new IllegalArgumentException("not owner");
return sync.getWaitingThreads((AbstractQueuedSynchronizer.ConditionObject)condition);
}
Returns a string identifying this lock, as well as its lock state. The state, in brackets, includes either the String "Unlocked"
or the String "Locked by"
followed by the name of the owning thread. Returns: a string identifying this lock, as well as its lock state
/**
* Returns a string identifying this lock, as well as its lock state.
* The state, in brackets, includes either the String {@code "Unlocked"}
* or the String {@code "Locked by"} followed by the
* {@linkplain Thread#getName name} of the owning thread.
*
* @return a string identifying this lock, as well as its lock state
*/
public String toString() {
Thread o = sync.getOwner();
return super.toString() + ((o == null) ?
"[Unlocked]" :
"[Locked by thread " + o.getName() + "]");
}
}