/*
 * Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package sun.security.ec;

import sun.security.util.math.IntegerFieldModuloP;
import sun.security.util.math.ImmutableIntegerModuloP;
import sun.security.util.math.IntegerModuloP;
import sun.security.util.math.MutableIntegerModuloP;
import sun.security.util.math.SmallValue;
import sun.security.util.math.intpoly.IntegerPolynomial25519;
import sun.security.util.math.intpoly.IntegerPolynomial448;

import java.math.BigInteger;
import java.security.ProviderException;
import java.security.SecureRandom;

public class XECOperations {

    private final XECParameters params;
    private final IntegerFieldModuloP field;
    private final ImmutableIntegerModuloP zero;
    private final ImmutableIntegerModuloP one;
    private final SmallValue a24;
    private final ImmutableIntegerModuloP basePoint;

    public XECOperations(XECParameters c) {
        this.params = c;

        BigInteger p = params.getP();
        this.field = getIntegerFieldModulo(p);
        this.zero = field.getElement(BigInteger.ZERO).fixed();
        this.one = field.get1().fixed();
        this.a24 = field.getSmallValue(params.getA24());
        this.basePoint = field.getElement(
            BigInteger.valueOf(c.getBasePoint()));
    }

    public XECParameters getParameters() {
        return params;
    }

    public byte[] generatePrivate(SecureRandom random) {
        byte[] result = new byte[this.params.getBytes()];
        random.nextBytes(result);
        return result;
    }

    
Compute a public key from an encoded private key. This method will modify the supplied array in order to prune it.
/** * Compute a public key from an encoded private key. This method will * modify the supplied array in order to prune it. */
public BigInteger computePublic(byte[] k) { pruneK(k); return pointMultiply(k, this.basePoint).asBigInteger(); }
Multiply an encoded scalar with a point as a BigInteger and return an encoded point. The array k holding the scalar will be pruned by modifying it in place.
Params:
  • k – an encoded scalar
  • u – the u-coordinate of a point as a BigInteger
Returns:the encoded product
/** * * Multiply an encoded scalar with a point as a BigInteger and return an * encoded point. The array k holding the scalar will be pruned by * modifying it in place. * * @param k an encoded scalar * @param u the u-coordinate of a point as a BigInteger * @return the encoded product */
public byte[] encodedPointMultiply(byte[] k, BigInteger u) { pruneK(k); ImmutableIntegerModuloP elemU = field.getElement(u); return pointMultiply(k, elemU).asByteArray(params.getBytes()); }
Multiply an encoded scalar with an encoded point and return an encoded point. The array k holding the scalar will be pruned by modifying it in place.
Params:
  • k – an encoded scalar
  • u – an encoded point
Returns:the encoded product
/** * * Multiply an encoded scalar with an encoded point and return an encoded * point. The array k holding the scalar will be pruned by * modifying it in place. * * @param k an encoded scalar * @param u an encoded point * @return the encoded product */
public byte[] encodedPointMultiply(byte[] k, byte[] u) { pruneK(k); ImmutableIntegerModuloP elemU = decodeU(u); return pointMultiply(k, elemU).asByteArray(params.getBytes()); }
Return the field element corresponding to an encoded u-coordinate. This method prunes u by modifying it in place.
Params:
  • u –
  • bits –
Returns:
/** * Return the field element corresponding to an encoded u-coordinate. * This method prunes u by modifying it in place. * * @param u * @param bits * @return */
private ImmutableIntegerModuloP decodeU(byte[] u, int bits) { maskHighOrder(u, bits); return field.getElement(u); }
Mask off the high order bits of an encoded integer in an array. The array is modified in place.
Params:
  • arr – an array containing an encoded integer
  • bits – the number of bits to keep
Returns:the number, in range [1,8], of bits kept in the highest byte
/** * Mask off the high order bits of an encoded integer in an array. The * array is modified in place. * * @param arr an array containing an encoded integer * @param bits the number of bits to keep * @return the number, in range [1,8], of bits kept in the highest byte */
private static byte maskHighOrder(byte[] arr, int bits) { int lastByteIndex = arr.length - 1; byte bitsMod8 = (byte) (bits % 8); byte highBits = bitsMod8 == 0 ? 8 : bitsMod8; byte msbMaskOff = (byte) ((1 << highBits) - 1); arr[lastByteIndex] &= msbMaskOff; return highBits; }
Prune an encoded scalar value by modifying it in place. The extra high-order bits are masked off, the highest valid bit it set, and the number is rounded down to a multiple of the cofactor.
Params:
  • k – an encoded scalar value
  • bits – the number of bits in the scalar
  • logCofactor – the base-2 logarithm of the cofactor
/** * Prune an encoded scalar value by modifying it in place. The extra * high-order bits are masked off, the highest valid bit it set, and the * number is rounded down to a multiple of the cofactor. * * @param k an encoded scalar value * @param bits the number of bits in the scalar * @param logCofactor the base-2 logarithm of the cofactor */
private static void pruneK(byte[] k, int bits, int logCofactor) { int lastByteIndex = k.length - 1; // mask off unused high-order bits byte highBits = maskHighOrder(k, bits); // set the highest bit byte msbMaskOn = (byte) (1 << (highBits - 1)); k[lastByteIndex] |= msbMaskOn; // round down to a multiple of the cofactor byte lsbMaskOff = (byte) (0xFF << logCofactor); k[0] &= lsbMaskOff; } private void pruneK(byte[] k) { pruneK(k, params.getBits(), params.getLogCofactor()); } private ImmutableIntegerModuloP decodeU(byte [] u) { return decodeU(u, params.getBits()); } // Constant-time conditional swap private static void cswap(int swap, MutableIntegerModuloP x1, MutableIntegerModuloP x2) { x1.conditionalSwapWith(x2, swap); } private static IntegerFieldModuloP getIntegerFieldModulo(BigInteger p) { if (p.equals(IntegerPolynomial25519.MODULUS)) { return new IntegerPolynomial25519(); } else if (p.equals(IntegerPolynomial448.MODULUS)) { return new IntegerPolynomial448(); } throw new ProviderException("Unsupported prime: " + p.toString()); } private int bitAt(byte[] arr, int index) { int byteIndex = index / 8; int bitIndex = index % 8; return (arr[byteIndex] & (1 << bitIndex)) >> bitIndex; } /* * Constant-time Montgomery ladder that computes k*u and returns the * result as a field element. */ private IntegerModuloP pointMultiply(byte[] k, ImmutableIntegerModuloP u) { ImmutableIntegerModuloP x_1 = u; MutableIntegerModuloP x_2 = this.one.mutable(); MutableIntegerModuloP z_2 = this.zero.mutable(); MutableIntegerModuloP x_3 = u.mutable(); MutableIntegerModuloP z_3 = this.one.mutable(); int swap = 0; // Variables below are reused to avoid unnecessary allocation // They will be assigned in the loop, so initial value doesn't matter MutableIntegerModuloP m1 = this.zero.mutable(); MutableIntegerModuloP DA = this.zero.mutable(); MutableIntegerModuloP E = this.zero.mutable(); MutableIntegerModuloP a24_times_E = this.zero.mutable(); // Comments describe the equivalent operations from RFC 7748 // In comments, A(m1) means the variable m1 holds the value A for (int t = params.getBits() - 1; t >= 0; t--) { int k_t = bitAt(k, t); swap = swap ^ k_t; cswap(swap, x_2, x_3); cswap(swap, z_2, z_3); swap = k_t; // A(m1) = x_2 + z_2 m1.setValue(x_2).setSum(z_2); // D = x_3 - z_3 // DA = D * A(m1) DA.setValue(x_3).setDifference(z_3).setProduct(m1); // AA(m1) = A(m1)^2 m1.setSquare(); // B(x_2) = x_2 - z_2 x_2.setDifference(z_2); // C = x_3 + z_3 // CB(x_3) = C * B(x_2) x_3.setSum(z_3).setProduct(x_2); // BB(x_2) = B^2 x_2.setSquare(); // E = AA(m1) - BB(x_2) E.setValue(m1).setDifference(x_2); // compute a24 * E using SmallValue a24_times_E.setValue(E); a24_times_E.setProduct(this.a24); // assign results to x_3, z_3, x_2, z_2 // x_2 = AA(m1) * BB x_2.setProduct(m1); // z_2 = E * (AA(m1) + a24 * E) z_2.setValue(m1).setSum(a24_times_E).setProduct(E); // z_3 = x_1*(DA - CB(x_3))^2 z_3.setValue(DA).setDifference(x_3).setSquare().setProduct(x_1); // x_3 = (CB(x_3) + DA)^2 x_3.setSum(DA).setSquare(); } cswap(swap, x_2, x_3); cswap(swap, z_2, z_3); // return (x_2 * z_2^(p - 2)) return x_2.setProduct(z_2.multiplicativeInverse()); } }