/*
 * Copyright (c) 2003, 2020, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package sun.security.rsa;

import java.math.BigInteger;

import java.security.*;
import java.security.spec.AlgorithmParameterSpec;
import java.security.spec.RSAKeyGenParameterSpec;

import static java.math.BigInteger.*;
import sun.security.jca.JCAUtil;
import sun.security.rsa.RSAUtil.KeyType;

import static sun.security.util.SecurityProviderConstants.DEF_RSA_KEY_SIZE;
import static sun.security.util.SecurityProviderConstants.DEF_RSASSA_PSS_KEY_SIZE;

RSA keypair generation. Standard algorithm, minimum key length 512 bit. We generate two random primes until we find two where phi is relative prime to the public exponent. Default exponent is 65537. It has only bit 0 and bit 4 set, which makes it particularly efficient.
Author: Andreas Sterbenz
Since: 1.5
/** * RSA keypair generation. Standard algorithm, minimum key length 512 bit. * We generate two random primes until we find two where phi is relative * prime to the public exponent. Default exponent is 65537. It has only bit 0 * and bit 4 set, which makes it particularly efficient. * * @since 1.5 * @author Andreas Sterbenz */
public abstract class RSAKeyPairGenerator extends KeyPairGeneratorSpi { private static final BigInteger SQRT_2048; private static final BigInteger SQRT_3072; private static final BigInteger SQRT_4096; static { SQRT_2048 = TWO.pow(2047).sqrt(); SQRT_3072 = TWO.pow(3071).sqrt(); SQRT_4096 = TWO.pow(4095).sqrt(); } // public exponent to use private BigInteger publicExponent; // size of the key to generate, >= RSAKeyFactory.MIN_MODLEN private int keySize; private final KeyType type; private AlgorithmParameterSpec keyParams; // PRNG to use private SecureRandom random; // whether to generate key pairs following the new guidelines from // FIPS 186-4 and later private boolean useNew; RSAKeyPairGenerator(KeyType type, int defKeySize) { this.type = type; // initialize to default in case the app does not call initialize() initialize(defKeySize, null); } // initialize the generator. See JCA doc public void initialize(int keySize, SecureRandom random) { try { initialize(new RSAKeyGenParameterSpec(keySize, RSAKeyGenParameterSpec.F4), random); } catch (InvalidAlgorithmParameterException iape) { throw new InvalidParameterException(iape.getMessage()); } } // second initialize method. See JCA doc. public void initialize(AlgorithmParameterSpec params, SecureRandom random) throws InvalidAlgorithmParameterException { if (params instanceof RSAKeyGenParameterSpec == false) { throw new InvalidAlgorithmParameterException ("Params must be instance of RSAKeyGenParameterSpec"); } RSAKeyGenParameterSpec rsaSpec = (RSAKeyGenParameterSpec)params; int tmpKeySize = rsaSpec.getKeysize(); BigInteger tmpPubExp = rsaSpec.getPublicExponent(); AlgorithmParameterSpec tmpParams = rsaSpec.getKeyParams(); // use the new approach for even key sizes >= 2048 AND when the // public exponent is within FIPS valid range boolean useNew = (tmpKeySize >= 2048 && ((tmpKeySize & 1) == 0)); if (tmpPubExp == null) { tmpPubExp = RSAKeyGenParameterSpec.F4; } else { if (!tmpPubExp.testBit(0)) { throw new InvalidAlgorithmParameterException ("Public exponent must be an odd number"); } // current impl checks that F0 <= e < 2^keysize // vs FIPS 186-4 checks that F4 <= e < 2^256 // for backward compatibility, we keep the same checks BigInteger minValue = RSAKeyGenParameterSpec.F0; int maxBitLength = tmpKeySize; if (tmpPubExp.compareTo(RSAKeyGenParameterSpec.F0) < 0) { throw new InvalidAlgorithmParameterException ("Public exponent must be " + minValue + " or larger"); } if (tmpPubExp.bitLength() > maxBitLength) { throw new InvalidAlgorithmParameterException ("Public exponent must be no longer than " + maxBitLength + " bits"); } useNew &= ((tmpPubExp.compareTo(RSAKeyGenParameterSpec.F4) >= 0) && (tmpPubExp.bitLength() < 256)); } // do not allow unreasonably large key sizes, probably user error try { RSAKeyFactory.checkKeyLengths(tmpKeySize, tmpPubExp, 512, 64 * 1024); } catch (InvalidKeyException e) { throw new InvalidAlgorithmParameterException( "Invalid key sizes", e); } try { this.keyParams = RSAUtil.checkParamsAgainstType(type, tmpParams); } catch (ProviderException e) { throw new InvalidAlgorithmParameterException( "Invalid key parameters", e); } this.keySize = tmpKeySize; this.publicExponent = tmpPubExp; this.random = (random == null? JCAUtil.getSecureRandom() : random); this.useNew = useNew; } // FIPS 186-4 B.3.3 / FIPS 186-5 A.1.3 // Generation of Random Primes that are Probably Prime public KeyPair generateKeyPair() { BigInteger e = publicExponent; BigInteger minValue = (useNew? getSqrt(keySize) : ZERO); int lp = (keySize + 1) >> 1;; int lq = keySize - lp; int pqDiffSize = lp - 100; while (true) { BigInteger p = null; BigInteger q = null; int i = 0; while (i++ < 10*lp) { BigInteger tmpP = BigInteger.probablePrime(lp, random); if ((!useNew || tmpP.compareTo(minValue) == 1) && isRelativePrime(e, tmpP.subtract(ONE))) { p = tmpP; break; } } if (p == null) { throw new ProviderException("Cannot find prime P"); } i = 0; while (i++ < 20*lq) { BigInteger tmpQ = BigInteger.probablePrime(lq, random); if ((!useNew || tmpQ.compareTo(minValue) == 1) && (p.subtract(tmpQ).abs().compareTo (TWO.pow(pqDiffSize)) == 1) && isRelativePrime(e, tmpQ.subtract(ONE))) { q = tmpQ; break; } } if (q == null) { throw new ProviderException("Cannot find prime Q"); } BigInteger n = p.multiply(q); if (n.bitLength() != keySize) { // regenerate P, Q if n is not the right length; should // never happen for the new case but check it anyway continue; } KeyPair kp = createKeyPair(type, keyParams, n, e, p, q); // done, return the generated keypair; if (kp != null) return kp; } } private static BigInteger getSqrt(int keySize) { BigInteger sqrt = null; switch (keySize) { case 2048: sqrt = SQRT_2048; break; case 3072: sqrt = SQRT_3072; break; case 4096: sqrt = SQRT_4096; break; default: sqrt = TWO.pow(keySize-1).sqrt(); } return sqrt; } private static boolean isRelativePrime(BigInteger e, BigInteger bi) { // optimize for common known public exponent prime values if (e.compareTo(RSAKeyGenParameterSpec.F4) == 0 || e.compareTo(RSAKeyGenParameterSpec.F0) == 0) { return !bi.mod(e).equals(ZERO); } else { return e.gcd(bi).equals(ONE); } } private static KeyPair createKeyPair(KeyType type, AlgorithmParameterSpec keyParams, BigInteger n, BigInteger e, BigInteger p, BigInteger q) { // phi = (p - 1) * (q - 1) must be relative prime to e // otherwise RSA just won't work ;-) BigInteger p1 = p.subtract(ONE); BigInteger q1 = q.subtract(ONE); BigInteger phi = p1.multiply(q1); BigInteger gcd = p1.gcd(q1); BigInteger lcm = (gcd.equals(ONE)? phi : phi.divide(gcd)); BigInteger d = e.modInverse(lcm); if (d.compareTo(TWO.pow(p.bitLength())) != 1) { return null; } // 1st prime exponent pe = d mod (p - 1) BigInteger pe = d.mod(p1); // 2nd prime exponent qe = d mod (q - 1) BigInteger qe = d.mod(q1); // crt coefficient coeff is the inverse of q mod p BigInteger coeff = q.modInverse(p); try { PublicKey publicKey = new RSAPublicKeyImpl(type, keyParams, n, e); PrivateKey privateKey = new RSAPrivateCrtKeyImpl( type, keyParams, n, e, d, p, q, pe, qe, coeff); return new KeyPair(publicKey, privateKey); } catch (InvalidKeyException exc) { // invalid key exception only thrown for keys < 512 bit, // will not happen here throw new RuntimeException(exc); } } public static final class Legacy extends RSAKeyPairGenerator { public Legacy() { super(KeyType.RSA, DEF_RSA_KEY_SIZE); } } public static final class PSS extends RSAKeyPairGenerator { public PSS() { super(KeyType.PSS, DEF_RSASSA_PSS_KEY_SIZE); } } }