/*
 * Copyright (c) 2014, 2018, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */


package org.graalvm.compiler.phases.graph;

import static org.graalvm.compiler.nodes.cfg.ControlFlowGraph.multiplyRelativeFrequencies;

import java.util.function.ToDoubleFunction;

import jdk.internal.vm.compiler.collections.EconomicMap;
import jdk.internal.vm.compiler.collections.Equivalence;
import org.graalvm.compiler.debug.CounterKey;
import org.graalvm.compiler.debug.DebugContext;
import org.graalvm.compiler.graph.Node;
import org.graalvm.compiler.graph.NodeInputList;
import org.graalvm.compiler.nodes.AbstractBeginNode;
import org.graalvm.compiler.nodes.AbstractEndNode;
import org.graalvm.compiler.nodes.AbstractMergeNode;
import org.graalvm.compiler.nodes.ControlSplitNode;
import org.graalvm.compiler.nodes.EndNode;
import org.graalvm.compiler.nodes.FixedNode;
import org.graalvm.compiler.nodes.LoopBeginNode;
import org.graalvm.compiler.nodes.StartNode;

Compute relative frequencies for fixed nodes on the fly and cache them at AbstractBeginNodes.
/** * Compute relative frequencies for fixed nodes on the fly and cache them at * {@link AbstractBeginNode}s. */
public class FixedNodeRelativeFrequencyCache implements ToDoubleFunction<FixedNode> { private static final CounterKey computeNodeRelativeFrequencyCounter = DebugContext.counter("ComputeNodeRelativeFrequency"); private final EconomicMap<FixedNode, Double> cache = EconomicMap.create(Equivalence.IDENTITY);

Given a FixedNode this method finds the most immediate AbstractBeginNode preceding it that either:

  • has no predecessor (ie, the begin-node is a merge, in particular a loop-begin, or the start-node)
  • has a control-split predecessor

The thus found AbstractBeginNode is equi-probable with the FixedNode it was obtained from. When computed for the first time (afterwards a cache lookup returns it) that relative frequency is computed as follows, again depending on the begin-node's predecessor:

  • No predecessor. In this case the begin-node is either:
    • a merge-node, whose relative frequency adds up those of its forward-ends
    • a loop-begin, with frequency as above multiplied by the loop-frequency
  • Control-split predecessor: frequency of the branch times that of the control-split

As an exception to all the above, a frequency of 1 is assumed for a FixedNode that appears to be dead-code (ie, lacks a predecessor).

/** * <p> * Given a {@link FixedNode} this method finds the most immediate {@link AbstractBeginNode} * preceding it that either: * <ul> * <li>has no predecessor (ie, the begin-node is a merge, in particular a loop-begin, or the * start-node)</li> * <li>has a control-split predecessor</li> * </ul> * </p> * * <p> * The thus found {@link AbstractBeginNode} is equi-probable with the {@link FixedNode} it was * obtained from. When computed for the first time (afterwards a cache lookup returns it) that * relative frequency is computed as follows, again depending on the begin-node's predecessor: * <ul> * <li>No predecessor. In this case the begin-node is either:</li> * <ul> * <li>a merge-node, whose relative frequency adds up those of its forward-ends</li> * <li>a loop-begin, with frequency as above multiplied by the loop-frequency</li> * </ul> * <li>Control-split predecessor: frequency of the branch times that of the control-split</li> * </ul> * </p> * * <p> * As an exception to all the above, a frequency of 1 is assumed for a {@link FixedNode} that * appears to be dead-code (ie, lacks a predecessor). * </p> * */
@Override public double applyAsDouble(FixedNode node) { assert node != null; computeNodeRelativeFrequencyCounter.increment(node.getDebug()); FixedNode current = findBegin(node); if (current == null) { // this should only appear for dead code return 1D; } assert current instanceof AbstractBeginNode; Double cachedValue = cache.get(current); if (cachedValue != null) { return cachedValue; } double relativeFrequency = 0.0; if (current.predecessor() == null) { if (current instanceof AbstractMergeNode) { relativeFrequency = handleMerge(current, relativeFrequency); } else { assert current instanceof StartNode; relativeFrequency = 1D; } } else { ControlSplitNode split = (ControlSplitNode) current.predecessor(); relativeFrequency = multiplyRelativeFrequencies(split.probability((AbstractBeginNode) current), applyAsDouble(split)); } assert !Double.isNaN(relativeFrequency) && !Double.isInfinite(relativeFrequency) : current + " " + relativeFrequency; cache.put(current, relativeFrequency); return relativeFrequency; } private double handleMerge(FixedNode current, double relativeFrequency) { double result = relativeFrequency; AbstractMergeNode currentMerge = (AbstractMergeNode) current; NodeInputList<EndNode> currentForwardEnds = currentMerge.forwardEnds(); /* * Use simple iteration instead of streams, since the stream infrastructure adds many frames * which causes the recursion to overflow the stack earlier than it would otherwise. */ for (AbstractEndNode endNode : currentForwardEnds) { result += applyAsDouble(endNode); } if (current instanceof LoopBeginNode) { result = multiplyRelativeFrequencies(result, ((LoopBeginNode) current).loopFrequency()); } return result; } private static FixedNode findBegin(FixedNode node) { FixedNode current = node; while (true) { assert current != null; Node predecessor = current.predecessor(); if (current instanceof AbstractBeginNode) { if (predecessor == null) { break; } else if (predecessor.successors().count() != 1) { assert predecessor instanceof ControlSplitNode : "a FixedNode with multiple successors needs to be a ControlSplitNode: " + current + " / " + predecessor; break; } } else if (predecessor == null) { current = null; break; } current = (FixedNode) predecessor; } return current; } }