/*
 * Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved.
 */
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.sun.org.apache.xalan.internal.xsltc.compiler;

import com.sun.org.apache.bcel.internal.classfile.Field;
import com.sun.org.apache.bcel.internal.generic.ASTORE;
import com.sun.org.apache.bcel.internal.generic.CHECKCAST;
import com.sun.org.apache.bcel.internal.generic.ConstantPoolGen;
import com.sun.org.apache.bcel.internal.generic.GETFIELD;
import com.sun.org.apache.bcel.internal.generic.INVOKESPECIAL;
import com.sun.org.apache.bcel.internal.generic.InstructionList;
import com.sun.org.apache.bcel.internal.generic.LocalVariableGen;
import com.sun.org.apache.bcel.internal.generic.NEW;
import com.sun.org.apache.bcel.internal.generic.PUSH;
import com.sun.org.apache.bcel.internal.generic.PUTFIELD;
import com.sun.org.apache.xalan.internal.xsltc.compiler.util.BooleanType;
import com.sun.org.apache.xalan.internal.xsltc.compiler.util.ClassGenerator;
import com.sun.org.apache.xalan.internal.xsltc.compiler.util.FilterGenerator;
import com.sun.org.apache.xalan.internal.xsltc.compiler.util.IntType;
import com.sun.org.apache.xalan.internal.xsltc.compiler.util.MethodGenerator;
import com.sun.org.apache.xalan.internal.xsltc.compiler.util.NumberType;
import com.sun.org.apache.xalan.internal.xsltc.compiler.util.ReferenceType;
import com.sun.org.apache.xalan.internal.xsltc.compiler.util.ResultTreeType;
import com.sun.org.apache.xalan.internal.xsltc.compiler.util.TestGenerator;
import com.sun.org.apache.xalan.internal.xsltc.compiler.util.Type;
import com.sun.org.apache.xalan.internal.xsltc.compiler.util.TypeCheckError;
import com.sun.org.apache.xalan.internal.xsltc.compiler.util.Util;
import com.sun.org.apache.xalan.internal.xsltc.runtime.Operators;
import java.util.ArrayList;
import java.util.List;

Author:Jacek Ambroziak, Santiago Pericas-Geertsen, Morten Jorgensen
@LastModified: Oct 2017
/** * @author Jacek Ambroziak * @author Santiago Pericas-Geertsen * @author Morten Jorgensen * @LastModified: Oct 2017 */
final class Predicate extends Expression implements Closure {
The predicate's expression.
/** * The predicate's expression. */
private Expression _exp = null;
This flag indicates if optimizations are turned on. The method dontOptimize() can be called to turn optimizations off.
/** * This flag indicates if optimizations are turned on. The * method <code>dontOptimize()</code> can be called to turn * optimizations off. */
private boolean _canOptimize = true;
Flag indicatig if the nth position optimization is on. It is set in typeCheck().
/** * Flag indicatig if the nth position optimization is on. It * is set in <code>typeCheck()</code>. */
private boolean _nthPositionFilter = false;
Flag indicatig if the nth position descendant is on. It is set in typeCheck().
/** * Flag indicatig if the nth position descendant is on. It * is set in <code>typeCheck()</code>. */
private boolean _nthDescendant = false;
Cached node type of the expression that owns this predicate.
/** * Cached node type of the expression that owns this predicate. */
int _ptype = -1;
Name of the inner class.
/** * Name of the inner class. */
private String _className = null;
List of variables in closure.
/** * List of variables in closure. */
private List<VariableRefBase> _closureVars = null;
Reference to parent closure.
/** * Reference to parent closure. */
private Closure _parentClosure = null;
Cached value of method getCompareValue().
/** * Cached value of method <code>getCompareValue()</code>. */
private Expression _value = null;
Cached value of method getCompareValue().
/** * Cached value of method <code>getCompareValue()</code>. */
private Step _step = null;
Initializes a predicate.
/** * Initializes a predicate. */
public Predicate(Expression exp) { _exp = exp; _exp.setParent(this); }
Set the parser for this expression.
/** * Set the parser for this expression. */
public void setParser(Parser parser) { super.setParser(parser); _exp.setParser(parser); }
Returns a boolean value indicating if the nth position optimization is on. Must be call after type checking!
/** * Returns a boolean value indicating if the nth position optimization * is on. Must be call after type checking! */
public boolean isNthPositionFilter() { return _nthPositionFilter; }
Returns a boolean value indicating if the nth descendant optimization is on. Must be call after type checking!
/** * Returns a boolean value indicating if the nth descendant optimization * is on. Must be call after type checking! */
public boolean isNthDescendant() { return _nthDescendant; }
Turns off all optimizations for this predicate.
/** * Turns off all optimizations for this predicate. */
public void dontOptimize() { _canOptimize = false; }
Returns true if the expression in this predicate contains a call to position().
/** * Returns true if the expression in this predicate contains a call * to position(). */
public boolean hasPositionCall() { return _exp.hasPositionCall(); }
Returns true if the expression in this predicate contains a call to last().
/** * Returns true if the expression in this predicate contains a call * to last(). */
public boolean hasLastCall() { return _exp.hasLastCall(); } // -- Begin Closure interface --------------------
Returns true if this closure is compiled in an inner class (i.e. if this is a real closure).
/** * Returns true if this closure is compiled in an inner class (i.e. * if this is a real closure). */
public boolean inInnerClass() { return (_className != null); }
Returns a reference to its parent closure or null if outermost.
/** * Returns a reference to its parent closure or null if outermost. */
public Closure getParentClosure() { if (_parentClosure == null) { SyntaxTreeNode node = getParent(); do { if (node instanceof Closure) { _parentClosure = (Closure) node; break; } if (node instanceof TopLevelElement) { break; // way up in the tree } node = node.getParent(); } while (node != null); } return _parentClosure; }
Returns the name of the auxiliary class or null if this predicate is compiled inside the Translet.
/** * Returns the name of the auxiliary class or null if this predicate * is compiled inside the Translet. */
public String getInnerClassName() { return _className; }
Add new variable to the closure.
/** * Add new variable to the closure. */
public void addVariable(VariableRefBase variableRef) { if (_closureVars == null) { _closureVars = new ArrayList<>(); } // Only one reference per variable if (!_closureVars.contains(variableRef)) { _closureVars.add(variableRef); // Add variable to parent closure as well Closure parentClosure = getParentClosure(); if (parentClosure != null) { parentClosure.addVariable(variableRef); } } } // -- End Closure interface ----------------------
Returns the node type of the expression owning this predicate. The return value is cached in _ptype.
/** * Returns the node type of the expression owning this predicate. The * return value is cached in <code>_ptype</code>. */
public int getPosType() { if (_ptype == -1) { SyntaxTreeNode parent = getParent(); if (parent instanceof StepPattern) { _ptype = ((StepPattern)parent).getNodeType(); } else if (parent instanceof AbsoluteLocationPath) { AbsoluteLocationPath path = (AbsoluteLocationPath)parent; Expression exp = path.getPath(); if (exp instanceof Step) { _ptype = ((Step)exp).getNodeType(); } } else if (parent instanceof VariableRefBase) { final VariableRefBase ref = (VariableRefBase)parent; final VariableBase var = ref.getVariable(); final Expression exp = var.getExpression(); if (exp instanceof Step) { _ptype = ((Step)exp).getNodeType(); } } else if (parent instanceof Step) { _ptype = ((Step)parent).getNodeType(); } } return _ptype; } public boolean parentIsPattern() { return (getParent() instanceof Pattern); } public Expression getExpr() { return _exp; } public String toString() { return "pred(" + _exp + ')'; }
Type check a predicate expression. If the type of the expression is number convert it to boolean by adding a comparison with position(). Note that if the expression is a parameter, we cannot distinguish at compile time if its type is number or not. Hence, expressions of reference type are always converted to booleans. This method may be called twice, before and after calling dontOptimize(). If so, the second time it should honor the new value of _canOptimize.
/** * Type check a predicate expression. If the type of the expression is * number convert it to boolean by adding a comparison with position(). * Note that if the expression is a parameter, we cannot distinguish * at compile time if its type is number or not. Hence, expressions of * reference type are always converted to booleans. * * This method may be called twice, before and after calling * <code>dontOptimize()</code>. If so, the second time it should honor * the new value of <code>_canOptimize</code>. */
public Type typeCheck(SymbolTable stable) throws TypeCheckError { Type texp = _exp.typeCheck(stable); // We need explicit type information for reference types - no good! if (texp instanceof ReferenceType) { _exp = new CastExpr(_exp, texp = Type.Real); } // A result tree fragment should not be cast directly to a number type, // but rather to a boolean value, and then to a numer (0 or 1). // Ref. section 11.2 of the XSLT 1.0 spec if (texp instanceof ResultTreeType) { _exp = new CastExpr(_exp, Type.Boolean); _exp = new CastExpr(_exp, Type.Real); texp = _exp.typeCheck(stable); } // Numerical types will be converted to a position filter if (texp instanceof NumberType) { // Cast any numerical types to an integer if (texp instanceof IntType == false) { _exp = new CastExpr(_exp, Type.Int); } if (_canOptimize) { // Nth position optimization. Expression must not depend on context _nthPositionFilter = !_exp.hasLastCall() && !_exp.hasPositionCall(); // _nthDescendant optimization - only if _nthPositionFilter is on if (_nthPositionFilter) { SyntaxTreeNode parent = getParent(); _nthDescendant = (parent instanceof Step) && (parent.getParent() instanceof AbsoluteLocationPath); return _type = Type.NodeSet; } } // Reset optimization flags _nthPositionFilter = _nthDescendant = false; // Otherwise, expand [e] to [position() = e] final QName position = getParser().getQNameIgnoreDefaultNs("position"); final PositionCall positionCall = new PositionCall(position); positionCall.setParser(getParser()); positionCall.setParent(this); _exp = new EqualityExpr(Operators.EQ, positionCall, _exp); if (_exp.typeCheck(stable) != Type.Boolean) { _exp = new CastExpr(_exp, Type.Boolean); } return _type = Type.Boolean; } else { // All other types will be handled as boolean values if (texp instanceof BooleanType == false) { _exp = new CastExpr(_exp, Type.Boolean); } return _type = Type.Boolean; } }
Create a new "Filter" class implementing CurrentNodeListFilter. Allocate registers for local variables and local parameters passed in the closure to test(). Notice that local variables need to be "unboxed".
/** * Create a new "Filter" class implementing * <code>CurrentNodeListFilter</code>. Allocate registers for local * variables and local parameters passed in the closure to test(). * Notice that local variables need to be "unboxed". */
private void compileFilter(ClassGenerator classGen, MethodGenerator methodGen) { TestGenerator testGen; LocalVariableGen local; FilterGenerator filterGen; _className = getXSLTC().getHelperClassName(); filterGen = new FilterGenerator(_className, "java.lang.Object", toString(), ACC_PUBLIC | ACC_SUPER, new String[] { CURRENT_NODE_LIST_FILTER }, classGen.getStylesheet()); final ConstantPoolGen cpg = filterGen.getConstantPool(); final int length = (_closureVars == null) ? 0 : _closureVars.size(); // Add a new instance variable for each var in closure for (int i = 0; i < length; i++) { VariableBase var = (_closureVars.get(i)).getVariable(); filterGen.addField(new Field(ACC_PUBLIC, cpg.addUtf8(var.getEscapedName()), cpg.addUtf8(var.getType().toSignature()), null, cpg.getConstantPool())); } final InstructionList il = new InstructionList(); testGen = new TestGenerator(ACC_PUBLIC | ACC_FINAL, com.sun.org.apache.bcel.internal.generic.Type.BOOLEAN, new com.sun.org.apache.bcel.internal.generic.Type[] { com.sun.org.apache.bcel.internal.generic.Type.INT, com.sun.org.apache.bcel.internal.generic.Type.INT, com.sun.org.apache.bcel.internal.generic.Type.INT, com.sun.org.apache.bcel.internal.generic.Type.INT, Util.getJCRefType(TRANSLET_SIG), Util.getJCRefType(NODE_ITERATOR_SIG) }, new String[] { "node", "position", "last", "current", "translet", "iterator" }, "test", _className, il, cpg); // Store the dom in a local variable local = testGen.addLocalVariable("document", Util.getJCRefType(DOM_INTF_SIG), null, null); final String className = classGen.getClassName(); il.append(filterGen.loadTranslet()); il.append(new CHECKCAST(cpg.addClass(className))); il.append(new GETFIELD(cpg.addFieldref(className, DOM_FIELD, DOM_INTF_SIG))); local.setStart(il.append(new ASTORE(local.getIndex()))); // Store the dom index in the test generator testGen.setDomIndex(local.getIndex()); _exp.translate(filterGen, testGen); il.append(IRETURN); filterGen.addEmptyConstructor(ACC_PUBLIC); filterGen.addMethod(testGen); getXSLTC().dumpClass(filterGen.getJavaClass()); }
Returns true if the predicate is a test for the existance of an element or attribute. All we have to do is to get the first node from the step, check if it is there, and then return true/false.
/** * Returns true if the predicate is a test for the existance of an * element or attribute. All we have to do is to get the first node * from the step, check if it is there, and then return true/false. */
public boolean isBooleanTest() { return (_exp instanceof BooleanExpr); }
Method to see if we can optimise the predicate by using a specialised iterator for expressions like '/foo/bar[@attr = $var]', which are very common in many stylesheets
/** * Method to see if we can optimise the predicate by using a specialised * iterator for expressions like '/foo/bar[@attr = $var]', which are * very common in many stylesheets */
public boolean isNodeValueTest() { if (!_canOptimize) return false; return (getStep() != null && getCompareValue() != null); }
Returns the step in an expression of the form 'step = value'. Null is returned if the expression is not of the right form. Optimization if off if null is returned.
/** * Returns the step in an expression of the form 'step = value'. * Null is returned if the expression is not of the right form. * Optimization if off if null is returned. */
public Step getStep() { // Returned cached value if called more than once if (_step != null) { return _step; } // Nothing to do if _exp is null if (_exp == null) { return null; } // Ignore if not equality expression if (_exp instanceof EqualityExpr) { EqualityExpr exp = (EqualityExpr)_exp; Expression left = exp.getLeft(); Expression right = exp.getRight(); // Unwrap and set _step if appropriate if (left instanceof CastExpr) { left = ((CastExpr) left).getExpr(); } if (left instanceof Step) { _step = (Step) left; } // Unwrap and set _step if appropriate if (right instanceof CastExpr) { right = ((CastExpr)right).getExpr(); } if (right instanceof Step) { _step = (Step)right; } } return _step; }
Returns the value in an expression of the form 'step = value'. A value may be either a literal string or a variable whose type is string. Optimization if off if null is returned.
/** * Returns the value in an expression of the form 'step = value'. * A value may be either a literal string or a variable whose * type is string. Optimization if off if null is returned. */
public Expression getCompareValue() { // Returned cached value if called more than once if (_value != null) { return _value; } // Nothing to to do if _exp is null if (_exp == null) { return null; } // Ignore if not an equality expression if (_exp instanceof EqualityExpr) { EqualityExpr exp = (EqualityExpr) _exp; Expression left = exp.getLeft(); Expression right = exp.getRight(); // Return if left is literal string if (left instanceof LiteralExpr) { _value = left; return _value; } // Return if left is a variable reference of type string if (left instanceof VariableRefBase && left.getType() == Type.String) { _value = left; return _value; } // Return if right is literal string if (right instanceof LiteralExpr) { _value = right; return _value; } // Return if left is a variable reference whose type is string if (right instanceof VariableRefBase && right.getType() == Type.String) { _value = right; return _value; } } return null; }
Translate a predicate expression. This translation pushes two references on the stack: a reference to a newly created filter object and a reference to the predicate's closure.
/** * Translate a predicate expression. This translation pushes * two references on the stack: a reference to a newly created * filter object and a reference to the predicate's closure. */
public void translateFilter(ClassGenerator classGen, MethodGenerator methodGen) { final ConstantPoolGen cpg = classGen.getConstantPool(); final InstructionList il = methodGen.getInstructionList(); // Compile auxiliary class for filter compileFilter(classGen, methodGen); // Create new instance of filter il.append(new NEW(cpg.addClass(_className))); il.append(DUP); il.append(new INVOKESPECIAL(cpg.addMethodref(_className, "<init>", "()V"))); // Initialize closure variables final int length = (_closureVars == null) ? 0 : _closureVars.size(); for (int i = 0; i < length; i++) { VariableRefBase varRef = _closureVars.get(i); VariableBase var = varRef.getVariable(); Type varType = var.getType(); il.append(DUP); // Find nearest closure implemented as an inner class Closure variableClosure = _parentClosure; while (variableClosure != null) { if (variableClosure.inInnerClass()) break; variableClosure = variableClosure.getParentClosure(); } // Use getfield if in an inner class if (variableClosure != null) { il.append(ALOAD_0); il.append(new GETFIELD( cpg.addFieldref(variableClosure.getInnerClassName(), var.getEscapedName(), varType.toSignature()))); } else { // Use a load of instruction if in translet class il.append(var.loadInstruction()); } // Store variable in new closure il.append(new PUTFIELD( cpg.addFieldref(_className, var.getEscapedName(), varType.toSignature()))); } }
Translate a predicate expression. If non of the optimizations apply then this translation pushes two references on the stack: a reference to a newly created filter object and a reference to the predicate's closure. See class Step for further details.
/** * Translate a predicate expression. If non of the optimizations apply * then this translation pushes two references on the stack: a reference * to a newly created filter object and a reference to the predicate's * closure. See class <code>Step</code> for further details. */
public void translate(ClassGenerator classGen, MethodGenerator methodGen) { final ConstantPoolGen cpg = classGen.getConstantPool(); final InstructionList il = methodGen.getInstructionList(); if (_nthPositionFilter || _nthDescendant) { _exp.translate(classGen, methodGen); } else if (isNodeValueTest() && (getParent() instanceof Step)) { _value.translate(classGen, methodGen); il.append(new CHECKCAST(cpg.addClass(STRING_CLASS))); il.append(new PUSH(cpg, ((EqualityExpr)_exp).getOp())); } else { translateFilter(classGen, methodGen); } } }