/*
* Copyright (c) 2017, 2020, Oracle and/or its affiliates. All rights reserved.
*/
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.sun.org.apache.bcel.internal.generic;
import java.util.Collection;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Map;
import java.util.Set;
import com.sun.org.apache.bcel.internal.classfile.Utility;
Instances of this class give users a handle to the instructions contained in
an InstructionList. Instruction objects may be used more than once within a
list, this is useful because it saves memory and may be much faster.
Within an InstructionList an InstructionHandle object is wrapped
around all instructions, i.e., it implements a cell in a
doubly-linked list. From the outside only the next and the
previous instruction (handle) are accessible. One
can traverse the list via an Enumeration returned by
InstructionList.elements().
See Also: - Instruction
- BranchHandle
- InstructionList
@LastModified : Jan 2020
/**
* Instances of this class give users a handle to the instructions contained in
* an InstructionList. Instruction objects may be used more than once within a
* list, this is useful because it saves memory and may be much faster.
*
* Within an InstructionList an InstructionHandle object is wrapped
* around all instructions, i.e., it implements a cell in a
* doubly-linked list. From the outside only the next and the
* previous instruction (handle) are accessible. One
* can traverse the list via an Enumeration returned by
* InstructionList.elements().
*
* @see Instruction
* @see BranchHandle
* @see InstructionList
* @LastModified: Jan 2020
*/
public class InstructionHandle {
private InstructionHandle next;
private InstructionHandle prev;
private Instruction instruction;
private int i_position = -1; // byte code offset of instruction
private Set<InstructionTargeter> targeters;
private Map<Object, Object> attributes;
Does nothing.
Deprecated: Does nothing as of 6.3.1.
/**
* Does nothing.
*
* @deprecated Does nothing as of 6.3.1.
*/
@Deprecated
protected void addHandle() {
// noop
}
public final InstructionHandle getNext() {
return next;
}
public final InstructionHandle getPrev() {
return prev;
}
public final Instruction getInstruction() {
return instruction;
}
Replace current instruction contained in this handle.
Old instruction is disposed using Instruction.dispose().
/**
* Replace current instruction contained in this handle.
* Old instruction is disposed using Instruction.dispose().
*/
public void setInstruction( final Instruction i ) { // Overridden in BranchHandle TODO could be package-protected?
if (i == null) {
throw new ClassGenException("Assigning null to handle");
}
if ((this.getClass() != BranchHandle.class) && (i instanceof BranchInstruction)) {
throw new ClassGenException("Assigning branch instruction " + i + " to plain handle");
}
if (instruction != null) {
instruction.dispose();
}
instruction = i;
}
Temporarily swap the current instruction, without disturbing
anything. Meant to be used by a debugger, implementing
breakpoints. Current instruction is returned.
Warning: if this is used on a BranchHandle then some methods such as
getPosition() will still refer to the original cached instruction, whereas
other BH methods may affect the cache and the replacement instruction.
/**
* Temporarily swap the current instruction, without disturbing
* anything. Meant to be used by a debugger, implementing
* breakpoints. Current instruction is returned.
* <p>
* Warning: if this is used on a BranchHandle then some methods such as
* getPosition() will still refer to the original cached instruction, whereas
* other BH methods may affect the cache and the replacement instruction.
*/
// See BCEL-273
// TODO remove this method in any redesign of BCEL
public Instruction swapInstruction( final Instruction i ) {
final Instruction oldInstruction = instruction;
instruction = i;
return oldInstruction;
}
/*private*/protected InstructionHandle(final Instruction i) {
setInstruction(i);
}
Factory method.
/** Factory method.
*/
static InstructionHandle getInstructionHandle( final Instruction i ) {
return new InstructionHandle(i);
}
Called by InstructionList.setPositions when setting the position for every
instruction. In the presence of variable length instructions `setPositions()'
performs multiple passes over the instruction list to calculate the
correct (byte) positions and offsets by calling this function.
Params: - offset – additional offset caused by preceding (variable length) instructions
- max_offset – the maximum offset that may be caused by these instructions
Returns: additional offset caused by possible change of this instruction's length
/**
* Called by InstructionList.setPositions when setting the position for every
* instruction. In the presence of variable length instructions `setPositions()'
* performs multiple passes over the instruction list to calculate the
* correct (byte) positions and offsets by calling this function.
*
* @param offset additional offset caused by preceding (variable length) instructions
* @param max_offset the maximum offset that may be caused by these instructions
* @return additional offset caused by possible change of this instruction's length
*/
protected int updatePosition( final int offset, final int max_offset ) {
i_position += offset;
return 0;
}
Returns: the position, i.e., the byte code offset of the contained
instruction. This is accurate only after
InstructionList.setPositions() has been called.
/** @return the position, i.e., the byte code offset of the contained
* instruction. This is accurate only after
* InstructionList.setPositions() has been called.
*/
public int getPosition() {
return i_position;
}
Set the position, i.e., the byte code offset of the contained
instruction.
/** Set the position, i.e., the byte code offset of the contained
* instruction.
*/
void setPosition( final int pos ) {
i_position = pos;
}
Delete contents, i.e., remove user access.
/**
* Delete contents, i.e., remove user access.
*/
void dispose() {
next = prev = null;
instruction.dispose();
instruction = null;
i_position = -1;
attributes = null;
removeAllTargeters();
}
Remove all targeters, if any.
/** Remove all targeters, if any.
*/
public void removeAllTargeters() {
if (targeters != null) {
targeters.clear();
}
}
Denote this handle isn't referenced anymore by t.
/**
* Denote this handle isn't referenced anymore by t.
*/
public void removeTargeter( final InstructionTargeter t ) {
if (targeters != null) {
targeters.remove(t);
}
}
Denote this handle is being referenced by t.
/**
* Denote this handle is being referenced by t.
*/
public void addTargeter( final InstructionTargeter t ) {
if (targeters == null) {
targeters = new HashSet<>();
}
//if(!targeters.contains(t))
targeters.add(t);
}
public boolean hasTargeters() {
return (targeters != null) && (targeters.size() > 0);
}
Returns: null, if there are no targeters
/**
* @return null, if there are no targeters
*/
public InstructionTargeter[] getTargeters() {
if (!hasTargeters()) {
return new InstructionTargeter[0];
}
final InstructionTargeter[] t = new InstructionTargeter[targeters.size()];
targeters.toArray(t);
return t;
}
Returns: a (verbose) string representation of the contained instruction.
/** @return a (verbose) string representation of the contained instruction.
*/
public String toString( final boolean verbose ) {
return Utility.format(i_position, 4, false, ' ') + ": " + instruction.toString(verbose);
}
Returns: a string representation of the contained instruction.
/** @return a string representation of the contained instruction.
*/
@Override
public String toString() {
return toString(true);
}
Add an attribute to an instruction handle.
Params: - key – the key object to store/retrieve the attribute
- attr – the attribute to associate with this handle
/** Add an attribute to an instruction handle.
*
* @param key the key object to store/retrieve the attribute
* @param attr the attribute to associate with this handle
*/
public void addAttribute( final Object key, final Object attr ) {
if (attributes == null) {
attributes = new HashMap<>(3);
}
attributes.put(key, attr);
}
Delete an attribute of an instruction handle.
Params: - key – the key object to retrieve the attribute
/** Delete an attribute of an instruction handle.
*
* @param key the key object to retrieve the attribute
*/
public void removeAttribute( final Object key ) {
if (attributes != null) {
attributes.remove(key);
}
}
Get attribute of an instruction handle.
Params: - key – the key object to store/retrieve the attribute
/** Get attribute of an instruction handle.
*
* @param key the key object to store/retrieve the attribute
*/
public Object getAttribute( final Object key ) {
if (attributes != null) {
return attributes.get(key);
}
return null;
}
Returns: all attributes associated with this handle
/** @return all attributes associated with this handle
*/
public Collection<Object> getAttributes() {
if (attributes == null) {
attributes = new HashMap<>(3);
}
return attributes.values();
}
Convenience method, simply calls accept() on the contained instruction.
Params: - v – Visitor object
/** Convenience method, simply calls accept() on the contained instruction.
*
* @param v Visitor object
*/
public void accept( final Visitor v ) {
instruction.accept(v);
}
Params: - next – the next to set
@ since 6.0
/**
* @param next the next to set
* @ since 6.0
*/
final InstructionHandle setNext(final InstructionHandle next) {
this.next = next;
return next;
}
Params: - prev – the prev to set
@ since 6.0
/**
* @param prev the prev to set
* @ since 6.0
*/
final InstructionHandle setPrev(final InstructionHandle prev) {
this.prev = prev;
return prev;
}
}