/*
 * Copyright (c) 2002, 2016, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package sun.security.provider;

import java.util.Arrays;
import java.util.Objects;

import jdk.internal.HotSpotIntrinsicCandidate;
import static sun.security.provider.ByteArrayAccess.*;

This class implements the Secure Hash Algorithm SHA-384 and SHA-512 developed by the National Institute of Standards and Technology along with the National Security Agency. The two algorithms are almost identical. This file contains a base class SHA5 and two nested static subclasses as the classes to be used by the JCA framework.

It implements java.security.MessageDigestSpi, and can be used through Java Cryptography Architecture (JCA), as a pluggable MessageDigest implementation.

Author: Valerie Peng, Andreas Sterbenz
Since: 1.4.2
/** * This class implements the Secure Hash Algorithm SHA-384 and SHA-512 * developed by the National Institute of Standards and Technology along * with the National Security Agency. * * The two algorithms are almost identical. This file contains a base * class SHA5 and two nested static subclasses as the classes to be used * by the JCA framework. * * <p>It implements java.security.MessageDigestSpi, and can be used * through Java Cryptography Architecture (JCA), as a pluggable * MessageDigest implementation. * * @since 1.4.2 * @author Valerie Peng * @author Andreas Sterbenz */
abstract class SHA5 extends DigestBase { private static final int ITERATION = 80; // Constants for each round/iteration private static final long[] ROUND_CONSTS = { 0x428A2F98D728AE22L, 0x7137449123EF65CDL, 0xB5C0FBCFEC4D3B2FL, 0xE9B5DBA58189DBBCL, 0x3956C25BF348B538L, 0x59F111F1B605D019L, 0x923F82A4AF194F9BL, 0xAB1C5ED5DA6D8118L, 0xD807AA98A3030242L, 0x12835B0145706FBEL, 0x243185BE4EE4B28CL, 0x550C7DC3D5FFB4E2L, 0x72BE5D74F27B896FL, 0x80DEB1FE3B1696B1L, 0x9BDC06A725C71235L, 0xC19BF174CF692694L, 0xE49B69C19EF14AD2L, 0xEFBE4786384F25E3L, 0x0FC19DC68B8CD5B5L, 0x240CA1CC77AC9C65L, 0x2DE92C6F592B0275L, 0x4A7484AA6EA6E483L, 0x5CB0A9DCBD41FBD4L, 0x76F988DA831153B5L, 0x983E5152EE66DFABL, 0xA831C66D2DB43210L, 0xB00327C898FB213FL, 0xBF597FC7BEEF0EE4L, 0xC6E00BF33DA88FC2L, 0xD5A79147930AA725L, 0x06CA6351E003826FL, 0x142929670A0E6E70L, 0x27B70A8546D22FFCL, 0x2E1B21385C26C926L, 0x4D2C6DFC5AC42AEDL, 0x53380D139D95B3DFL, 0x650A73548BAF63DEL, 0x766A0ABB3C77B2A8L, 0x81C2C92E47EDAEE6L, 0x92722C851482353BL, 0xA2BFE8A14CF10364L, 0xA81A664BBC423001L, 0xC24B8B70D0F89791L, 0xC76C51A30654BE30L, 0xD192E819D6EF5218L, 0xD69906245565A910L, 0xF40E35855771202AL, 0x106AA07032BBD1B8L, 0x19A4C116B8D2D0C8L, 0x1E376C085141AB53L, 0x2748774CDF8EEB99L, 0x34B0BCB5E19B48A8L, 0x391C0CB3C5C95A63L, 0x4ED8AA4AE3418ACBL, 0x5B9CCA4F7763E373L, 0x682E6FF3D6B2B8A3L, 0x748F82EE5DEFB2FCL, 0x78A5636F43172F60L, 0x84C87814A1F0AB72L, 0x8CC702081A6439ECL, 0x90BEFFFA23631E28L, 0xA4506CEBDE82BDE9L, 0xBEF9A3F7B2C67915L, 0xC67178F2E372532BL, 0xCA273ECEEA26619CL, 0xD186B8C721C0C207L, 0xEADA7DD6CDE0EB1EL, 0xF57D4F7FEE6ED178L, 0x06F067AA72176FBAL, 0x0A637DC5A2C898A6L, 0x113F9804BEF90DAEL, 0x1B710B35131C471BL, 0x28DB77F523047D84L, 0x32CAAB7B40C72493L, 0x3C9EBE0A15C9BEBCL, 0x431D67C49C100D4CL, 0x4CC5D4BECB3E42B6L, 0x597F299CFC657E2AL, 0x5FCB6FAB3AD6FAECL, 0x6C44198C4A475817L }; // buffer used by implCompress() private long[] W; // state of this object private long[] state; // initial state value. different between SHA-384 and SHA-512 private final long[] initialHashes;
Creates a new SHA object.
/** * Creates a new SHA object. */
SHA5(String name, int digestLength, long[] initialHashes) { super(name, digestLength, 128); this.initialHashes = initialHashes; state = new long[8]; W = new long[80]; resetHashes(); } final void implReset() { resetHashes(); Arrays.fill(W, 0L); } private void resetHashes() { System.arraycopy(initialHashes, 0, state, 0, state.length); } final void implDigest(byte[] out, int ofs) { long bitsProcessed = bytesProcessed << 3; int index = (int)bytesProcessed & 0x7f; int padLen = (index < 112) ? (112 - index) : (240 - index); engineUpdate(padding, 0, padLen + 8); i2bBig4((int)(bitsProcessed >>> 32), buffer, 120); i2bBig4((int)bitsProcessed, buffer, 124); implCompress(buffer, 0); int len = engineGetDigestLength(); if (len == 28) { // Special case for SHA-512/224 l2bBig(state, 0, out, ofs, 24); i2bBig4((int)(state[3] >> 32), out, ofs + 24); } else { l2bBig(state, 0, out, ofs, len); } }
logical function ch(x,y,z) as defined in spec:
Params:
  • x – long
  • y – long
  • z – long
Returns:(x and y) xor ((complement x) and z)
/** * logical function ch(x,y,z) as defined in spec: * @return (x and y) xor ((complement x) and z) * @param x long * @param y long * @param z long */
private static long lf_ch(long x, long y, long z) { return (x & y) ^ ((~x) & z); }
logical function maj(x,y,z) as defined in spec:
Params:
  • x – long
  • y – long
  • z – long
Returns:(x and y) xor (x and z) xor (y and z)
/** * logical function maj(x,y,z) as defined in spec: * @return (x and y) xor (x and z) xor (y and z) * @param x long * @param y long * @param z long */
private static long lf_maj(long x, long y, long z) { return (x & y) ^ (x & z) ^ (y & z); }
logical function R(x,s) - right shift
Params:
  • x – long
  • s – int
Returns:x right shift for s times
/** * logical function R(x,s) - right shift * @return x right shift for s times * @param x long * @param s int */
private static long lf_R(long x, int s) { return (x >>> s); }
logical function S(x,s) - right rotation
Params:
  • x – long
  • s – int
Returns:x circular right shift for s times
/** * logical function S(x,s) - right rotation * @return x circular right shift for s times * @param x long * @param s int */
private static long lf_S(long x, int s) { return (x >>> s) | (x << (64 - s)); }
logical function sigma0(x) - xor of results of right rotations
Params:
  • x – long
Returns:S(x,28) xor S(x,34) xor S(x,39)
/** * logical function sigma0(x) - xor of results of right rotations * @return S(x,28) xor S(x,34) xor S(x,39) * @param x long */
private static long lf_sigma0(long x) { return lf_S(x, 28) ^ lf_S(x, 34) ^ lf_S(x, 39); }
logical function sigma1(x) - xor of results of right rotations
Params:
  • x – long
Returns:S(x,14) xor S(x,18) xor S(x,41)
/** * logical function sigma1(x) - xor of results of right rotations * @return S(x,14) xor S(x,18) xor S(x,41) * @param x long */
private static long lf_sigma1(long x) { return lf_S(x, 14) ^ lf_S(x, 18) ^ lf_S(x, 41); }
logical function delta0(x) - xor of results of right shifts/rotations
Params:
  • x – long
Returns:long
/** * logical function delta0(x) - xor of results of right shifts/rotations * @return long * @param x long */
private static long lf_delta0(long x) { return lf_S(x, 1) ^ lf_S(x, 8) ^ lf_R(x, 7); }
logical function delta1(x) - xor of results of right shifts/rotations
Params:
  • x – long
Returns:long
/** * logical function delta1(x) - xor of results of right shifts/rotations * @return long * @param x long */
private static long lf_delta1(long x) { return lf_S(x, 19) ^ lf_S(x, 61) ^ lf_R(x, 6); }
Compute the hash for the current block. This is in the same vein as Peter Gutmann's algorithm listed in the back of Applied Cryptography, Compact implementation of "old" NIST Secure Hash Algorithm.
/** * Compute the hash for the current block. * * This is in the same vein as Peter Gutmann's algorithm listed in * the back of Applied Cryptography, Compact implementation of * "old" NIST Secure Hash Algorithm. */
final void implCompress(byte[] buf, int ofs) { implCompressCheck(buf, ofs); implCompress0(buf, ofs); } private void implCompressCheck(byte[] buf, int ofs) { Objects.requireNonNull(buf); // The checks performed by the method 'b2iBig128' // are sufficient for the case when the method // 'implCompressImpl' is replaced with a compiler // intrinsic. b2lBig128(buf, ofs, W); } // The method 'implCompressImpl' seems not to use its parameters. // The method can, however, be replaced with a compiler intrinsic // that operates directly on the array 'buf' (starting from // offset 'ofs') and not on array 'W', therefore 'buf' and 'ofs' // must be passed as parameter to the method. @HotSpotIntrinsicCandidate private final void implCompress0(byte[] buf, int ofs) { // The first 16 longs are from the byte stream, compute the rest of // the W[]'s for (int t = 16; t < ITERATION; t++) { W[t] = lf_delta1(W[t-2]) + W[t-7] + lf_delta0(W[t-15]) + W[t-16]; } long a = state[0]; long b = state[1]; long c = state[2]; long d = state[3]; long e = state[4]; long f = state[5]; long g = state[6]; long h = state[7]; for (int i = 0; i < ITERATION; i++) { long T1 = h + lf_sigma1(e) + lf_ch(e,f,g) + ROUND_CONSTS[i] + W[i]; long T2 = lf_sigma0(a) + lf_maj(a,b,c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; } state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; state[5] += f; state[6] += g; state[7] += h; } public Object clone() throws CloneNotSupportedException { SHA5 copy = (SHA5) super.clone(); copy.state = copy.state.clone(); copy.W = new long[80]; return copy; }
SHA-512 implementation class.
/** * SHA-512 implementation class. */
public static final class SHA512 extends SHA5 { private static final long[] INITIAL_HASHES = { 0x6a09e667f3bcc908L, 0xbb67ae8584caa73bL, 0x3c6ef372fe94f82bL, 0xa54ff53a5f1d36f1L, 0x510e527fade682d1L, 0x9b05688c2b3e6c1fL, 0x1f83d9abfb41bd6bL, 0x5be0cd19137e2179L }; public SHA512() { super("SHA-512", 64, INITIAL_HASHES); } }
SHA-384 implementation class.
/** * SHA-384 implementation class. */
public static final class SHA384 extends SHA5 { private static final long[] INITIAL_HASHES = { 0xcbbb9d5dc1059ed8L, 0x629a292a367cd507L, 0x9159015a3070dd17L, 0x152fecd8f70e5939L, 0x67332667ffc00b31L, 0x8eb44a8768581511L, 0xdb0c2e0d64f98fa7L, 0x47b5481dbefa4fa4L }; public SHA384() { super("SHA-384", 48, INITIAL_HASHES); } } public static final class SHA512_224 extends SHA5 { private static final long[] INITIAL_HASHES = { 0x8C3D37C819544DA2L, 0x73E1996689DCD4D6L, 0x1DFAB7AE32FF9C82L, 0x679DD514582F9FCFL, 0x0F6D2B697BD44DA8L, 0x77E36F7304C48942L, 0x3F9D85A86A1D36C8L, 0x1112E6AD91D692A1L }; public SHA512_224() { super("SHA-512/224", 28, INITIAL_HASHES); } } public static final class SHA512_256 extends SHA5 { private static final long[] INITIAL_HASHES = { 0x22312194FC2BF72CL, 0x9F555FA3C84C64C2L, 0x2393B86B6F53B151L, 0x963877195940EABDL, 0x96283EE2A88EFFE3L, 0xBE5E1E2553863992L, 0x2B0199FC2C85B8AAL, 0x0EB72DDC81C52CA2L }; public SHA512_256() { super("SHA-512/256", 32, INITIAL_HASHES); } } }