/*
 * Copyright (c) 2011, 2019, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */


package org.graalvm.compiler.phases.util;

import java.util.ArrayList;
import java.util.List;

import jdk.internal.vm.compiler.collections.EconomicMap;
import jdk.internal.vm.compiler.collections.Equivalence;
import org.graalvm.compiler.core.common.cfg.Loop;
import org.graalvm.compiler.debug.DebugContext;
import org.graalvm.compiler.debug.GraalError;
import org.graalvm.compiler.graph.GraalGraphError;
import org.graalvm.compiler.graph.Node;
import org.graalvm.compiler.graph.NodeBitMap;
import org.graalvm.compiler.nodes.AbstractEndNode;
import org.graalvm.compiler.nodes.AbstractMergeNode;
import org.graalvm.compiler.nodes.ConstantNode;
import org.graalvm.compiler.nodes.EndNode;
import org.graalvm.compiler.nodes.FixedNode;
import org.graalvm.compiler.nodes.FrameState;
import org.graalvm.compiler.nodes.FullInfopointNode;
import org.graalvm.compiler.nodes.LoopBeginNode;
import org.graalvm.compiler.nodes.LoopExitNode;
import org.graalvm.compiler.nodes.PhiNode;
import org.graalvm.compiler.nodes.ProxyNode;
import org.graalvm.compiler.nodes.StateSplit;
import org.graalvm.compiler.nodes.StructuredGraph;
import org.graalvm.compiler.nodes.StructuredGraph.GuardsStage;
import org.graalvm.compiler.nodes.StructuredGraph.ScheduleResult;
import org.graalvm.compiler.nodes.ValueNode;
import org.graalvm.compiler.nodes.VirtualState;
import org.graalvm.compiler.nodes.VirtualState.NodeClosure;
import org.graalvm.compiler.nodes.cfg.Block;
import org.graalvm.compiler.nodes.virtual.VirtualObjectNode;
import org.graalvm.compiler.phases.graph.ReentrantBlockIterator;
import org.graalvm.compiler.phases.graph.ReentrantBlockIterator.BlockIteratorClosure;
import org.graalvm.compiler.phases.graph.StatelessPostOrderNodeIterator;
import org.graalvm.compiler.phases.schedule.SchedulePhase;
import org.graalvm.compiler.phases.schedule.SchedulePhase.SchedulingStrategy;

public final class GraphOrder {

    private GraphOrder() {
    }

    
Quick (and imprecise) assertion that there are no (invalid) cycles in the given graph. First, an ordered list of all nodes in the graph (a total ordering) is created. A second run over this list checks whether inputs are scheduled before their usages.
Params:
  • graph – the graph to be checked.
Throws:
/** * Quick (and imprecise) assertion that there are no (invalid) cycles in the given graph. First, * an ordered list of all nodes in the graph (a total ordering) is created. A second run over * this list checks whether inputs are scheduled before their usages. * * @param graph the graph to be checked. * @throws AssertionError if a cycle was detected. */
public static boolean assertNonCyclicGraph(StructuredGraph graph) { List<Node> order = createOrder(graph); NodeBitMap visited = graph.createNodeBitMap(); visited.clearAll(); for (Node node : order) { if (node instanceof PhiNode && ((PhiNode) node).merge() instanceof LoopBeginNode) { assert visited.isMarked(((PhiNode) node).valueAt(0)); // nothing to do } else { for (Node input : node.inputs()) { if (!visited.isMarked(input)) { if (input instanceof FrameState) { // nothing to do - frame states are known, allowed cycles } else { assert false : "unexpected cycle detected at input " + node + " -> " + input; } } } } visited.mark(node); } return true; } private static List<Node> createOrder(StructuredGraph graph) { final ArrayList<Node> nodes = new ArrayList<>(); final NodeBitMap visited = graph.createNodeBitMap(); new StatelessPostOrderNodeIterator(graph.start()) { @Override protected void node(FixedNode node) { visitForward(nodes, visited, node, false); } }.apply(); return nodes; } private static void visitForward(ArrayList<Node> nodes, NodeBitMap visited, Node node, boolean floatingOnly) { try { assert node == null || node.isAlive() : node + " not alive"; if (node != null && !visited.isMarked(node)) { if (floatingOnly && node instanceof FixedNode) { throw new GraalError("unexpected reference to fixed node: %s (this indicates an unexpected cycle)", node); } visited.mark(node); FrameState stateAfter = null; if (node instanceof StateSplit) { stateAfter = ((StateSplit) node).stateAfter(); } for (Node input : node.inputs()) { if (input != stateAfter) { visitForward(nodes, visited, input, true); } } if (node instanceof EndNode) { EndNode end = (EndNode) node; for (PhiNode phi : end.merge().phis()) { visitForward(nodes, visited, phi.valueAt(end), true); } } nodes.add(node); if (node instanceof AbstractMergeNode) { for (PhiNode phi : ((AbstractMergeNode) node).phis()) { visited.mark(phi); nodes.add(phi); } } if (stateAfter != null) { visitForward(nodes, visited, stateAfter, true); } } } catch (GraalError e) { throw GraalGraphError.transformAndAddContext(e, node); } }
This method schedules the graph and makes sure that, for every node, all inputs are available at the position where it is scheduled. This is a very expensive assertion.
/** * This method schedules the graph and makes sure that, for every node, all inputs are available * at the position where it is scheduled. This is a very expensive assertion. */
@SuppressWarnings("try") public static boolean assertSchedulableGraph(final StructuredGraph graph) { assert graph.getGuardsStage() != GuardsStage.AFTER_FSA : "Cannot use the BlockIteratorClosure after FrameState Assignment, HIR Loop Data Structures are no longer valid."; try (DebugContext.Scope s = graph.getDebug().scope("AssertSchedulableGraph")) { final SchedulePhase schedulePhase = new SchedulePhase(getSchedulingPolicy(graph), true); final EconomicMap<LoopBeginNode, NodeBitMap> loopEntryStates = EconomicMap.create(Equivalence.IDENTITY); schedulePhase.apply(graph, false); final ScheduleResult schedule = graph.getLastSchedule(); BlockIteratorClosure<NodeBitMap> closure = new BlockIteratorClosure<NodeBitMap>() { @Override protected List<NodeBitMap> processLoop(Loop<Block> loop, NodeBitMap initialState) { return ReentrantBlockIterator.processLoop(this, loop, initialState).exitStates; } @Override protected NodeBitMap processBlock(final Block block, final NodeBitMap currentState) { final List<Node> list = graph.getLastSchedule().getBlockToNodesMap().get(block); /* * A stateAfter is not valid directly after its associated state split, but * right before the next fixed node. Therefore a pending stateAfter is kept that * will be checked at the correct position. */ FrameState pendingStateAfter = null; for (final Node node : list) { if (node instanceof ValueNode) { FrameState stateAfter = node instanceof StateSplit ? ((StateSplit) node).stateAfter() : null; if (node instanceof FullInfopointNode) { stateAfter = ((FullInfopointNode) node).getState(); } if (pendingStateAfter != null && node instanceof FixedNode) { pendingStateAfter.applyToNonVirtual(new NodeClosure<Node>() { @Override public void apply(Node usage, Node nonVirtualNode) { assert currentState.isMarked(nonVirtualNode) || nonVirtualNode instanceof VirtualObjectNode || nonVirtualNode instanceof ConstantNode : nonVirtualNode + " not available at virtualstate " + usage + " before " + node + " in block " + block + " \n" + list; } }); pendingStateAfter = null; } if (node instanceof AbstractMergeNode) { // phis aren't scheduled, so they need to be added explicitly currentState.markAll(((AbstractMergeNode) node).phis()); if (node instanceof LoopBeginNode) { // remember the state at the loop entry, it's restored at exits loopEntryStates.put((LoopBeginNode) node, currentState.copy()); } } else if (node instanceof ProxyNode) { assert false : "proxy nodes should not be in the schedule"; } else if (node instanceof LoopExitNode) { if (graph.hasValueProxies()) { for (ProxyNode proxy : ((LoopExitNode) node).proxies()) { for (Node input : proxy.inputs()) { if (input != proxy.proxyPoint()) { assert currentState.isMarked(input) : input + " not available at " + proxy + " in block " + block + "\n" + list; } } } // loop contents are only accessible via proxies at the exit currentState.clearAll(); currentState.markAll(loopEntryStates.get(((LoopExitNode) node).loopBegin())); } // Loop proxies aren't scheduled, so they need to be added // explicitly currentState.markAll(((LoopExitNode) node).proxies()); } else { for (Node input : node.inputs()) { if (input != stateAfter) { if (input instanceof FrameState) { ((FrameState) input).applyToNonVirtual(new VirtualState.NodeClosure<Node>() { @Override public void apply(Node usage, Node nonVirtual) { assert currentState.isMarked(nonVirtual) : nonVirtual + " not available at " + node + " in block " + block + "\n" + list; } }); } else { assert currentState.isMarked(input) || input instanceof VirtualObjectNode || input instanceof ConstantNode : input + " not available at " + node + " in block " + block + "\n" + list; } } } } if (node instanceof AbstractEndNode) { AbstractMergeNode merge = ((AbstractEndNode) node).merge(); for (PhiNode phi : merge.phis()) { ValueNode phiValue = phi.valueAt((AbstractEndNode) node); assert phiValue == null || currentState.isMarked(phiValue) || phiValue instanceof ConstantNode : phiValue + " not available at phi " + phi + " / end " + node + " in block " + block; } } if (stateAfter != null) { assert pendingStateAfter == null; pendingStateAfter = stateAfter; } currentState.mark(node); } } if (pendingStateAfter != null) { pendingStateAfter.applyToNonVirtual(new NodeClosure<Node>() { @Override public void apply(Node usage, Node nonVirtualNode) { assert currentState.isMarked(nonVirtualNode) || nonVirtualNode instanceof VirtualObjectNode || nonVirtualNode instanceof ConstantNode : nonVirtualNode + " not available at virtualstate " + usage + " at end of block " + block + " \n" + list; } }); } return currentState; } @Override protected NodeBitMap merge(Block merge, List<NodeBitMap> states) { NodeBitMap result = states.get(0); for (int i = 1; i < states.size(); i++) { result.intersect(states.get(i)); } return result; } @Override protected NodeBitMap getInitialState() { NodeBitMap ret = graph.createNodeBitMap(); ret.markAll(graph.getNodes().filter(ConstantNode.class)); return ret; } @Override protected NodeBitMap cloneState(NodeBitMap oldState) { return oldState.copy(); } }; ReentrantBlockIterator.apply(closure, schedule.getCFG().getStartBlock()); } catch (Throwable t) { graph.getDebug().handle(t); } return true; } /* * Complexity of verification for LATEST_OUT_OF_LOOPS with value proxies exceeds the benefits. * The problem are floating values that can be scheduled before the loop and have proxies only * on some use edges after the loop. These values, which are hard to detect, get scheduled * before the loop exit and are not visible in the state after the loop exit. */ private static SchedulingStrategy getSchedulingPolicy(StructuredGraph graph) { return graph.hasValueProxies() ? SchedulingStrategy.EARLIEST : SchedulingStrategy.LATEST_OUT_OF_LOOPS; } }