package org.graalvm.compiler.nodes.calc;
import org.graalvm.compiler.core.common.type.ArithmeticOpTable;
import org.graalvm.compiler.core.common.type.ArithmeticOpTable.BinaryOp;
import org.graalvm.compiler.core.common.type.ArithmeticOpTable.BinaryOp.Add;
import org.graalvm.compiler.core.common.type.IntegerStamp;
import org.graalvm.compiler.core.common.type.Stamp;
import org.graalvm.compiler.graph.NodeClass;
import org.graalvm.compiler.graph.spi.Canonicalizable.BinaryCommutative;
import org.graalvm.compiler.graph.spi.CanonicalizerTool;
import org.graalvm.compiler.lir.gen.ArithmeticLIRGeneratorTool;
import org.graalvm.compiler.nodeinfo.NodeInfo;
import org.graalvm.compiler.nodes.ConstantNode;
import org.graalvm.compiler.nodes.NodeView;
import org.graalvm.compiler.nodes.ValueNode;
import org.graalvm.compiler.nodes.spi.NodeLIRBuilderTool;
import jdk.vm.ci.code.CodeUtil;
import jdk.vm.ci.meta.Constant;
import jdk.vm.ci.meta.JavaConstant;
import jdk.vm.ci.meta.Value;
@NodeInfo(shortName = "+")
public class AddNode extends BinaryArithmeticNode<Add> implements NarrowableArithmeticNode, BinaryCommutative<ValueNode> {
public static final NodeClass<AddNode> TYPE = NodeClass.create(AddNode.class);
public AddNode(ValueNode x, ValueNode y) {
this(TYPE, x, y);
}
protected AddNode(NodeClass<? extends AddNode> c, ValueNode x, ValueNode y) {
super(c, ArithmeticOpTable::getAdd, x, y);
}
public static ValueNode create(ValueNode x, ValueNode y, NodeView view) {
BinaryOp<Add> op = ArithmeticOpTable.forStamp(x.stamp(view)).getAdd();
Stamp stamp = op.foldStamp(x.stamp(view), y.stamp(view));
ConstantNode tryConstantFold = tryConstantFold(op, x, y, stamp, view);
if (tryConstantFold != null) {
return tryConstantFold;
}
if (x.isConstant() && !y.isConstant()) {
return canonical(null, op, y, x, view);
} else {
return canonical(null, op, x, y, view);
}
}
private static ValueNode canonical(AddNode addNode, BinaryOp<Add> op, ValueNode forX, ValueNode forY, NodeView view) {
AddNode self = addNode;
boolean associative = op.isAssociative();
if (associative) {
if (forX instanceof SubNode) {
SubNode sub = (SubNode) forX;
if (sub.getY() == forY) {
return sub.getX();
}
}
if (forY instanceof SubNode) {
SubNode sub = (SubNode) forY;
if (sub.getY() == forX) {
return sub.getX();
}
}
}
if (forY.isConstant()) {
Constant c = forY.asConstant();
if (op.isNeutral(c)) {
return forX;
}
if (associative && self != null) {
ValueNode reassociated = reassociate(self, ValueNode.isConstantPredicate(), forX, forY, view);
if (reassociated != self) {
return reassociated;
}
}
if (c instanceof JavaConstant && (forX instanceof SignExtendNode || forX instanceof ZeroExtendNode)) {
IntegerConvertNode<?, ?> integerConvertNode = (IntegerConvertNode<?, ?>) forX;
ValueNode valueNode = integerConvertNode.getValue();
long constant = ((JavaConstant) c).asLong();
if (valueNode instanceof AddNode) {
AddNode addBeforeExtend = (AddNode) valueNode;
if (addBeforeExtend.getY().isConstant()) {
IntegerStamp beforeExtendStamp = (IntegerStamp) addBeforeExtend.stamp(view);
int bits = beforeExtendStamp.getBits();
if (constant >= CodeUtil.minValue(bits) && constant <= CodeUtil.maxValue(bits)) {
IntegerStamp narrowConstantStamp = IntegerStamp.create(bits, constant, constant);
if (!IntegerStamp.addCanOverflow(narrowConstantStamp, beforeExtendStamp)) {
ConstantNode constantNode = ConstantNode.forIntegerStamp(narrowConstantStamp, constant);
if (forX instanceof SignExtendNode) {
return SignExtendNode.create(AddNode.create(addBeforeExtend, constantNode, view), integerConvertNode.getResultBits(), view);
} else {
assert forX instanceof ZeroExtendNode;
boolean crossesZeroPoint = true;
if (constant > 0) {
if (beforeExtendStamp.lowerBound() >= 0 || beforeExtendStamp.upperBound() < -constant) {
crossesZeroPoint = false;
}
} else {
if (beforeExtendStamp.lowerBound() >= -constant || beforeExtendStamp.upperBound() < 0) {
crossesZeroPoint = false;
}
}
if (!crossesZeroPoint) {
return ZeroExtendNode.create(AddNode.create(addBeforeExtend, constantNode, view), integerConvertNode.getResultBits(), view);
}
}
}
}
}
}
}
}
if (forX instanceof NegateNode) {
return BinaryArithmeticNode.sub(forY, ((NegateNode) forX).getValue(), view);
} else if (forY instanceof NegateNode) {
return BinaryArithmeticNode.sub(forX, ((NegateNode) forY).getValue(), view);
}
if (self == null) {
self = (AddNode) new AddNode(forX, forY).maybeCommuteInputs();
}
return self;
}
@Override
public ValueNode canonical(CanonicalizerTool tool, ValueNode forX, ValueNode forY) {
ValueNode ret = super.canonical(tool, forX, forY);
if (ret != this) {
return ret;
}
if (forX.isConstant() && !forY.isConstant()) {
ValueNode improvement = canonical(tool, forY, forX);
if (improvement != this) {
return improvement;
}
return new AddNode(forY, forX);
}
BinaryOp<Add> op = getOp(forX, forY);
NodeView view = NodeView.from(tool);
return canonical(this, op, forX, forY, view);
}
@Override
public void generate(NodeLIRBuilderTool nodeValueMap, ArithmeticLIRGeneratorTool gen) {
Value op1 = nodeValueMap.operand(getX());
assert op1 != null : getX() + ", this=" + this;
Value op2 = nodeValueMap.operand(getY());
if (shouldSwapInputs(nodeValueMap)) {
Value tmp = op1;
op1 = op2;
op2 = tmp;
}
nodeValueMap.setResult(this, gen.emitAdd(op1, op2, false));
}
}