/*
* Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package com.sun.tools.javac.jvm;
import com.sun.tools.javac.code.*;
import com.sun.tools.javac.code.Symbol.*;
import com.sun.tools.javac.code.Type.*;
import com.sun.tools.javac.jvm.Code.*;
import com.sun.tools.javac.tree.JCTree;
import com.sun.tools.javac.util.Assert;
import static com.sun.tools.javac.jvm.ByteCodes.*;
A helper class for code generation. Items are objects
that stand for addressable entities in the bytecode. Each item
supports a fixed protocol for loading the item on the stack, storing
into it, converting it into a jump condition, and several others.
There are many individual forms of items, such as local, static,
indexed, or instance variables, values on the top of stack, the
special values this or super, etc. Individual items are represented as
inner classes in class Items.
This is NOT part of any supported API.
If you write code that depends on this, you do so at your own risk.
This code and its internal interfaces are subject to change or
deletion without notice.
/** A helper class for code generation. Items are objects
* that stand for addressable entities in the bytecode. Each item
* supports a fixed protocol for loading the item on the stack, storing
* into it, converting it into a jump condition, and several others.
* There are many individual forms of items, such as local, static,
* indexed, or instance variables, values on the top of stack, the
* special values this or super, etc. Individual items are represented as
* inner classes in class Items.
*
* <p><b>This is NOT part of any supported API.
* If you write code that depends on this, you do so at your own risk.
* This code and its internal interfaces are subject to change or
* deletion without notice.</b>
*/
public class Items {
The current constant pool.
/** The current constant pool.
*/
Pool pool;
The current code buffer.
/** The current code buffer.
*/
Code code;
The current symbol table.
/** The current symbol table.
*/
Symtab syms;
Type utilities. /** Type utilities. */
Types types;
Items that exist only once (flyweight pattern).
/** Items that exist only once (flyweight pattern).
*/
private final Item voidItem;
private final Item thisItem;
private final Item superItem;
private final Item[] stackItem = new Item[TypeCodeCount];
public Items(Pool pool, Code code, Symtab syms, Types types) {
this.code = code;
this.pool = pool;
this.types = types;
voidItem = new Item(VOIDcode) {
public String toString() { return "void"; }
};
thisItem = new SelfItem(false);
superItem = new SelfItem(true);
for (int i = 0; i < VOIDcode; i++) stackItem[i] = new StackItem(i);
stackItem[VOIDcode] = voidItem;
this.syms = syms;
}
Make a void item
/** Make a void item
*/
Item makeVoidItem() {
return voidItem;
}
Make an item representing `this'.
/** Make an item representing `this'.
*/
Item makeThisItem() {
return thisItem;
}
Make an item representing `super'.
/** Make an item representing `super'.
*/
Item makeSuperItem() {
return superItem;
}
Make an item representing a value on stack.
@param type The value's type.
/** Make an item representing a value on stack.
* @param type The value's type.
*/
Item makeStackItem(Type type) {
return stackItem[Code.typecode(type)];
}
Make an item representing a dynamically invoked method.
@param member The represented symbol.
/** Make an item representing a dynamically invoked method.
* @param member The represented symbol.
*/
Item makeDynamicItem(Symbol member) {
return new DynamicItem(member);
}
Make an item representing an indexed expression.
@param type The expression's type.
/** Make an item representing an indexed expression.
* @param type The expression's type.
*/
Item makeIndexedItem(Type type) {
return new IndexedItem(type);
}
Make an item representing a local variable.
@param v The represented variable.
/** Make an item representing a local variable.
* @param v The represented variable.
*/
LocalItem makeLocalItem(VarSymbol v) {
return new LocalItem(v.erasure(types), v.adr);
}
Make an item representing a local anonymous variable.
@param type The represented variable's type.
@param reg The represented variable's register.
/** Make an item representing a local anonymous variable.
* @param type The represented variable's type.
* @param reg The represented variable's register.
*/
private LocalItem makeLocalItem(Type type, int reg) {
return new LocalItem(type, reg);
}
Make an item representing a static variable or method.
@param member The represented symbol.
/** Make an item representing a static variable or method.
* @param member The represented symbol.
*/
Item makeStaticItem(Symbol member) {
return new StaticItem(member);
}
Make an item representing an instance variable or method.
@param member The represented symbol.
@param nonvirtual Is the reference not virtual? (true for constructors
and private members).
/** Make an item representing an instance variable or method.
* @param member The represented symbol.
* @param nonvirtual Is the reference not virtual? (true for constructors
* and private members).
*/
Item makeMemberItem(Symbol member, boolean nonvirtual) {
return new MemberItem(member, nonvirtual);
}
Make an item representing a literal.
@param type The literal's type.
@param value The literal's value.
/** Make an item representing a literal.
* @param type The literal's type.
* @param value The literal's value.
*/
Item makeImmediateItem(Type type, Object value) {
return new ImmediateItem(type, value);
}
Make an item representing an assignment expression.
@param lhs The item representing the assignment's left hand side.
/** Make an item representing an assignment expression.
* @param lhs The item representing the assignment's left hand side.
*/
Item makeAssignItem(Item lhs) {
return new AssignItem(lhs);
}
Make an item representing a conditional or unconditional jump.
@param opcode The jump's opcode.
@param trueJumps A chain encomassing all jumps that can be taken
if the condition evaluates to true.
@param falseJumps A chain encomassing all jumps that can be taken
if the condition evaluates to false.
/** Make an item representing a conditional or unconditional jump.
* @param opcode The jump's opcode.
* @param trueJumps A chain encomassing all jumps that can be taken
* if the condition evaluates to true.
* @param falseJumps A chain encomassing all jumps that can be taken
* if the condition evaluates to false.
*/
CondItem makeCondItem(int opcode, Chain trueJumps, Chain falseJumps) {
return new CondItem(opcode, trueJumps, falseJumps);
}
Make an item representing a conditional or unconditional jump.
@param opcode The jump's opcode.
/** Make an item representing a conditional or unconditional jump.
* @param opcode The jump's opcode.
*/
CondItem makeCondItem(int opcode) {
return makeCondItem(opcode, null, null);
}
The base class of all items, which implements default behavior.
/** The base class of all items, which implements default behavior.
*/
abstract class Item {
The type code of values represented by this item.
/** The type code of values represented by this item.
*/
int typecode;
Item(int typecode) {
this.typecode = typecode;
}
Generate code to load this item onto stack.
/** Generate code to load this item onto stack.
*/
Item load() {
throw new AssertionError();
}
Generate code to store top of stack into this item.
/** Generate code to store top of stack into this item.
*/
void store() {
throw new AssertionError("store unsupported: " + this);
}
Generate code to invoke method represented by this item.
/** Generate code to invoke method represented by this item.
*/
Item invoke() {
throw new AssertionError(this);
}
Generate code to use this item twice.
/** Generate code to use this item twice.
*/
void duplicate() {}
Generate code to avoid having to use this item.
/** Generate code to avoid having to use this item.
*/
void drop() {}
Generate code to stash a copy of top of stack - of typecode toscode -
under this item.
/** Generate code to stash a copy of top of stack - of typecode toscode -
* under this item.
*/
void stash(int toscode) {
stackItem[toscode].duplicate();
}
Generate code to turn item into a testable condition.
/** Generate code to turn item into a testable condition.
*/
CondItem mkCond() {
load();
return makeCondItem(ifne);
}
Generate code to coerce item to given type code.
@param targetcode The type code to coerce to.
/** Generate code to coerce item to given type code.
* @param targetcode The type code to coerce to.
*/
Item coerce(int targetcode) {
if (typecode == targetcode)
return this;
else {
load();
int typecode1 = Code.truncate(typecode);
int targetcode1 = Code.truncate(targetcode);
if (typecode1 != targetcode1) {
int offset = targetcode1 > typecode1 ? targetcode1 - 1
: targetcode1;
code.emitop0(i2l + typecode1 * 3 + offset);
}
if (targetcode != targetcode1) {
code.emitop0(int2byte + targetcode - BYTEcode);
}
return stackItem[targetcode];
}
}
Generate code to coerce item to given type.
@param targettype The type to coerce to.
/** Generate code to coerce item to given type.
* @param targettype The type to coerce to.
*/
Item coerce(Type targettype) {
return coerce(Code.typecode(targettype));
}
Return the width of this item on stack as a number of words.
/** Return the width of this item on stack as a number of words.
*/
int width() {
return 0;
}
public abstract String toString();
}
An item representing a value on stack.
/** An item representing a value on stack.
*/
class StackItem extends Item {
StackItem(int typecode) {
super(typecode);
}
Item load() {
return this;
}
void duplicate() {
code.emitop0(width() == 2 ? dup2 : dup);
}
void drop() {
code.emitop0(width() == 2 ? pop2 : pop);
}
void stash(int toscode) {
code.emitop0(
(width() == 2 ? dup_x2 : dup_x1) + 3 * (Code.width(toscode) - 1));
}
int width() {
return Code.width(typecode);
}
public String toString() {
return "stack(" + typecodeNames[typecode] + ")";
}
}
An item representing an indexed expression.
/** An item representing an indexed expression.
*/
class IndexedItem extends Item {
IndexedItem(Type type) {
super(Code.typecode(type));
}
Item load() {
code.emitop0(iaload + typecode);
return stackItem[typecode];
}
void store() {
code.emitop0(iastore + typecode);
}
void duplicate() {
code.emitop0(dup2);
}
void drop() {
code.emitop0(pop2);
}
void stash(int toscode) {
code.emitop0(dup_x2 + 3 * (Code.width(toscode) - 1));
}
int width() {
return 2;
}
public String toString() {
return "indexed(" + ByteCodes.typecodeNames[typecode] + ")";
}
}
An item representing `this' or `super'.
/** An item representing `this' or `super'.
*/
class SelfItem extends Item {
Flag which determines whether this item represents `this' or `super'.
/** Flag which determines whether this item represents `this' or `super'.
*/
boolean isSuper;
SelfItem(boolean isSuper) {
super(OBJECTcode);
this.isSuper = isSuper;
}
Item load() {
code.emitop0(aload_0);
return stackItem[typecode];
}
public String toString() {
return isSuper ? "super" : "this";
}
}
An item representing a local variable.
/** An item representing a local variable.
*/
class LocalItem extends Item {
The variable's register.
/** The variable's register.
*/
int reg;
The variable's type.
/** The variable's type.
*/
Type type;
LocalItem(Type type, int reg) {
super(Code.typecode(type));
Assert.check(reg >= 0);
this.type = type;
this.reg = reg;
}
Item load() {
if (reg <= 3)
code.emitop0(iload_0 + Code.truncate(typecode) * 4 + reg);
else
code.emitop1w(iload + Code.truncate(typecode), reg);
return stackItem[typecode];
}
void store() {
if (reg <= 3)
code.emitop0(istore_0 + Code.truncate(typecode) * 4 + reg);
else
code.emitop1w(istore + Code.truncate(typecode), reg);
code.setDefined(reg);
}
void incr(int x) {
if (typecode == INTcode && x >= -32768 && x <= 32767) {
code.emitop1w(iinc, reg, x);
} else {
load();
if (x >= 0) {
makeImmediateItem(syms.intType, x).load();
code.emitop0(iadd);
} else {
makeImmediateItem(syms.intType, -x).load();
code.emitop0(isub);
}
makeStackItem(syms.intType).coerce(typecode);
store();
}
}
public String toString() {
return "localItem(type=" + type + "; reg=" + reg + ")";
}
}
An item representing a static variable or method.
/** An item representing a static variable or method.
*/
class StaticItem extends Item {
The represented symbol.
/** The represented symbol.
*/
Symbol member;
StaticItem(Symbol member) {
super(Code.typecode(member.erasure(types)));
this.member = member;
}
Item load() {
code.emitop2(getstatic, pool.put(member));
return stackItem[typecode];
}
void store() {
code.emitop2(putstatic, pool.put(member));
}
Item invoke() {
MethodType mtype = (MethodType)member.erasure(types);
int rescode = Code.typecode(mtype.restype);
code.emitInvokestatic(pool.put(member), mtype);
return stackItem[rescode];
}
public String toString() {
return "static(" + member + ")";
}
}
An item representing a dynamic call site.
/** An item representing a dynamic call site.
*/
class DynamicItem extends StaticItem {
DynamicItem(Symbol member) {
super(member);
}
Item load() {
assert false;
return null;
}
void store() {
assert false;
}
Item invoke() {
// assert target.hasNativeInvokeDynamic();
MethodType mtype = (MethodType)member.erasure(types);
int rescode = Code.typecode(mtype.restype);
code.emitInvokedynamic(pool.put(member), mtype);
return stackItem[rescode];
}
public String toString() {
return "dynamic(" + member + ")";
}
}
An item representing an instance variable or method.
/** An item representing an instance variable or method.
*/
class MemberItem extends Item {
The represented symbol.
/** The represented symbol.
*/
Symbol member;
Flag that determines whether or not access is virtual.
/** Flag that determines whether or not access is virtual.
*/
boolean nonvirtual;
MemberItem(Symbol member, boolean nonvirtual) {
super(Code.typecode(member.erasure(types)));
this.member = member;
this.nonvirtual = nonvirtual;
}
Item load() {
code.emitop2(getfield, pool.put(member));
return stackItem[typecode];
}
void store() {
code.emitop2(putfield, pool.put(member));
}
Item invoke() {
MethodType mtype = (MethodType)member.externalType(types);
int rescode = Code.typecode(mtype.restype);
if ((member.owner.flags() & Flags.INTERFACE) != 0 && !nonvirtual) {
code.emitInvokeinterface(pool.put(member), mtype);
} else if (nonvirtual) {
code.emitInvokespecial(pool.put(member), mtype);
} else {
code.emitInvokevirtual(pool.put(member), mtype);
}
return stackItem[rescode];
}
void duplicate() {
stackItem[OBJECTcode].duplicate();
}
void drop() {
stackItem[OBJECTcode].drop();
}
void stash(int toscode) {
stackItem[OBJECTcode].stash(toscode);
}
int width() {
return 1;
}
public String toString() {
return "member(" + member + (nonvirtual ? " nonvirtual)" : ")");
}
}
An item representing a literal.
/** An item representing a literal.
*/
class ImmediateItem extends Item {
The literal's value.
/** The literal's value.
*/
Object value;
ImmediateItem(Type type, Object value) {
super(Code.typecode(type));
this.value = value;
}
private void ldc() {
int idx = pool.put(value);
if (typecode == LONGcode || typecode == DOUBLEcode) {
code.emitop2(ldc2w, idx);
} else {
code.emitLdc(idx);
}
}
Item load() {
switch (typecode) {
case INTcode: case BYTEcode: case SHORTcode: case CHARcode:
int ival = ((Number)value).intValue();
if (-1 <= ival && ival <= 5)
code.emitop0(iconst_0 + ival);
else if (Byte.MIN_VALUE <= ival && ival <= Byte.MAX_VALUE)
code.emitop1(bipush, ival);
else if (Short.MIN_VALUE <= ival && ival <= Short.MAX_VALUE)
code.emitop2(sipush, ival);
else
ldc();
break;
case LONGcode:
long lval = ((Number)value).longValue();
if (lval == 0 || lval == 1)
code.emitop0(lconst_0 + (int)lval);
else
ldc();
break;
case FLOATcode:
float fval = ((Number)value).floatValue();
if (isPosZero(fval) || fval == 1.0 || fval == 2.0)
code.emitop0(fconst_0 + (int)fval);
else {
ldc();
}
break;
case DOUBLEcode:
double dval = ((Number)value).doubleValue();
if (isPosZero(dval) || dval == 1.0)
code.emitop0(dconst_0 + (int)dval);
else
ldc();
break;
case OBJECTcode:
ldc();
break;
default:
Assert.error();
}
return stackItem[typecode];
}
//where
Return true iff float number is positive 0.
/** Return true iff float number is positive 0.
*/
private boolean isPosZero(float x) {
return x == 0.0f && 1.0f / x > 0.0f;
}
Return true iff double number is positive 0.
/** Return true iff double number is positive 0.
*/
private boolean isPosZero(double x) {
return x == 0.0d && 1.0d / x > 0.0d;
}
CondItem mkCond() {
int ival = ((Number)value).intValue();
return makeCondItem(ival != 0 ? goto_ : dontgoto);
}
Item coerce(int targetcode) {
if (typecode == targetcode) {
return this;
} else {
switch (targetcode) {
case INTcode:
if (Code.truncate(typecode) == INTcode)
return this;
else
return new ImmediateItem(
syms.intType,
((Number)value).intValue());
case LONGcode:
return new ImmediateItem(
syms.longType,
((Number)value).longValue());
case FLOATcode:
return new ImmediateItem(
syms.floatType,
((Number)value).floatValue());
case DOUBLEcode:
return new ImmediateItem(
syms.doubleType,
((Number)value).doubleValue());
case BYTEcode:
return new ImmediateItem(
syms.byteType,
(int)(byte)((Number)value).intValue());
case CHARcode:
return new ImmediateItem(
syms.charType,
(int)(char)((Number)value).intValue());
case SHORTcode:
return new ImmediateItem(
syms.shortType,
(int)(short)((Number)value).intValue());
default:
return super.coerce(targetcode);
}
}
}
public String toString() {
return "immediate(" + value + ")";
}
}
An item representing an assignment expressions.
/** An item representing an assignment expressions.
*/
class AssignItem extends Item {
The item representing the assignment's left hand side.
/** The item representing the assignment's left hand side.
*/
Item lhs;
AssignItem(Item lhs) {
super(lhs.typecode);
this.lhs = lhs;
}
Item load() {
lhs.stash(typecode);
lhs.store();
return stackItem[typecode];
}
void duplicate() {
load().duplicate();
}
void drop() {
lhs.store();
}
void stash(int toscode) {
Assert.error();
}
int width() {
return lhs.width() + Code.width(typecode);
}
public String toString() {
return "assign(lhs = " + lhs + ")";
}
}
An item representing a conditional or unconditional jump.
/** An item representing a conditional or unconditional jump.
*/
class CondItem extends Item {
A chain encomassing all jumps that can be taken
if the condition evaluates to true.
/** A chain encomassing all jumps that can be taken
* if the condition evaluates to true.
*/
Chain trueJumps;
A chain encomassing all jumps that can be taken
if the condition evaluates to false.
/** A chain encomassing all jumps that can be taken
* if the condition evaluates to false.
*/
Chain falseJumps;
The jump's opcode.
/** The jump's opcode.
*/
int opcode;
/*
* An abstract syntax tree of this item. It is needed
* for branch entries in 'CharacterRangeTable' attribute.
*/
JCTree tree;
CondItem(int opcode, Chain truejumps, Chain falsejumps) {
super(BYTEcode);
this.opcode = opcode;
this.trueJumps = truejumps;
this.falseJumps = falsejumps;
}
Item load() {
Chain trueChain = null;
Chain falseChain = jumpFalse();
if (!isFalse()) {
code.resolve(trueJumps);
code.emitop0(iconst_1);
trueChain = code.branch(goto_);
}
if (falseChain != null) {
code.resolve(falseChain);
code.emitop0(iconst_0);
}
code.resolve(trueChain);
return stackItem[typecode];
}
void duplicate() {
load().duplicate();
}
void drop() {
load().drop();
}
void stash(int toscode) {
Assert.error();
}
CondItem mkCond() {
return this;
}
Chain jumpTrue() {
if (tree == null) return Code.mergeChains(trueJumps, code.branch(opcode));
// we should proceed further in -Xjcov mode only
int startpc = code.curCP();
Chain c = Code.mergeChains(trueJumps, code.branch(opcode));
code.crt.put(tree, CRTable.CRT_BRANCH_TRUE, startpc, code.curCP());
return c;
}
Chain jumpFalse() {
if (tree == null) return Code.mergeChains(falseJumps, code.branch(Code.negate(opcode)));
// we should proceed further in -Xjcov mode only
int startpc = code.curCP();
Chain c = Code.mergeChains(falseJumps, code.branch(Code.negate(opcode)));
code.crt.put(tree, CRTable.CRT_BRANCH_FALSE, startpc, code.curCP());
return c;
}
CondItem negate() {
CondItem c = new CondItem(Code.negate(opcode), falseJumps, trueJumps);
c.tree = tree;
return c;
}
int width() {
// a CondItem doesn't have a size on the stack per se.
throw new AssertionError();
}
boolean isTrue() {
return falseJumps == null && opcode == goto_;
}
boolean isFalse() {
return trueJumps == null && opcode == dontgoto;
}
public String toString() {
return "cond(" + Code.mnem(opcode) + ")";
}
}
}