/*
* Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
*/
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.sun.org.apache.xerces.internal.dom;
import java.io.Serializable;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import org.w3c.dom.DOMException;
import org.w3c.dom.Document;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;
import org.w3c.dom.UserDataHandler;
ParentNode inherits from ChildNode and adds the capability of having child
nodes. Not every node in the DOM can have children, so only nodes that can
should inherit from this class and pay the price for it.
ParentNode, just like NodeImpl, also implements NodeList, so it can
return itself in response to the getChildNodes() query. This eliminiates
the need for a separate ChildNodeList object. Note that this is an
IMPLEMENTATION DETAIL; applications should _never_ assume that
this identity exists. On the other hand, subclasses may need to override
this, in case of conflicting names. This is the case for the classes
HTMLSelectElementImpl and HTMLFormElementImpl of the HTML DOM.
While we have a direct reference to the first child, the last child is
stored as the previous sibling of the first child. First child nodes are
marked as being so, and getNextSibling hides this fact.
Note: Not all parent nodes actually need to also be a child. At some
point we used to have ParentNode inheriting from NodeImpl and another class
called ChildAndParentNode that inherited from ChildNode. But due to the lack
of multiple inheritance a lot of code had to be duplicated which led to a
maintenance nightmare. At the same time only a few nodes (Document,
DocumentFragment, Entity, and Attribute) cannot be a child so the gain in
memory wasn't really worth it. The only type for which this would be the
case is Attribute, but we deal with there in another special way, so this is
not applicable.
This class doesn't directly support mutation events, however, it notifies
the document when mutations are performed so that the document class do so.
WARNING: Some of the code here is partially duplicated in
AttrImpl, be careful to keep these two classes in sync!
Author: Arnaud Le Hors, IBM, Joe Kesselman, IBM, Andy Clark, IBM @xerces.internal
/**
* ParentNode inherits from ChildNode and adds the capability of having child
* nodes. Not every node in the DOM can have children, so only nodes that can
* should inherit from this class and pay the price for it.
* <P>
* ParentNode, just like NodeImpl, also implements NodeList, so it can
* return itself in response to the getChildNodes() query. This eliminiates
* the need for a separate ChildNodeList object. Note that this is an
* IMPLEMENTATION DETAIL; applications should _never_ assume that
* this identity exists. On the other hand, subclasses may need to override
* this, in case of conflicting names. This is the case for the classes
* HTMLSelectElementImpl and HTMLFormElementImpl of the HTML DOM.
* <P>
* While we have a direct reference to the first child, the last child is
* stored as the previous sibling of the first child. First child nodes are
* marked as being so, and getNextSibling hides this fact.
* <P>Note: Not all parent nodes actually need to also be a child. At some
* point we used to have ParentNode inheriting from NodeImpl and another class
* called ChildAndParentNode that inherited from ChildNode. But due to the lack
* of multiple inheritance a lot of code had to be duplicated which led to a
* maintenance nightmare. At the same time only a few nodes (Document,
* DocumentFragment, Entity, and Attribute) cannot be a child so the gain in
* memory wasn't really worth it. The only type for which this would be the
* case is Attribute, but we deal with there in another special way, so this is
* not applicable.
* <p>
* This class doesn't directly support mutation events, however, it notifies
* the document when mutations are performed so that the document class do so.
*
* <p><b>WARNING</b>: Some of the code here is partially duplicated in
* AttrImpl, be careful to keep these two classes in sync!
*
* @xerces.internal
*
* @author Arnaud Le Hors, IBM
* @author Joe Kesselman, IBM
* @author Andy Clark, IBM
*/
public abstract class ParentNode
extends ChildNode {
Serialization version. /** Serialization version. */
static final long serialVersionUID = 2815829867152120872L;
Owner document. /** Owner document. */
protected CoreDocumentImpl ownerDocument;
First child. /** First child. */
protected ChildNode firstChild = null;
// transients
NodeList cache /** NodeList cache */
protected transient NodeListCache fNodeListCache = null;
//
// Constructors
//
No public constructor; only subclasses of ParentNode should be
instantiated, and those normally via a Document's factory methods
/**
* No public constructor; only subclasses of ParentNode should be
* instantiated, and those normally via a Document's factory methods
*/
protected ParentNode(CoreDocumentImpl ownerDocument) {
super(ownerDocument);
this.ownerDocument = ownerDocument;
}
Constructor for serialization. /** Constructor for serialization. */
public ParentNode() {}
//
// NodeList methods
//
Returns a duplicate of a given node. You can consider this a
generic "copy constructor" for nodes. The newly returned object should
be completely independent of the source object's subtree, so changes
in one after the clone has been made will not affect the other.
Example: Cloning a Text node will copy both the node and the text it
contains.
Example: Cloning something that has children -- Element or Attr, for
example -- will _not_ clone those children unless a "deep clone"
has been requested. A shallow clone of an Attr node will yield an
empty Attr of the same name.
NOTE: Clones will always be read/write, even if the node being cloned
is read-only, to permit applications using only the DOM API to obtain
editable copies of locked portions of the tree.
/**
* Returns a duplicate of a given node. You can consider this a
* generic "copy constructor" for nodes. The newly returned object should
* be completely independent of the source object's subtree, so changes
* in one after the clone has been made will not affect the other.
* <p>
* Example: Cloning a Text node will copy both the node and the text it
* contains.
* <p>
* Example: Cloning something that has children -- Element or Attr, for
* example -- will _not_ clone those children unless a "deep clone"
* has been requested. A shallow clone of an Attr node will yield an
* empty Attr of the same name.
* <p>
* NOTE: Clones will always be read/write, even if the node being cloned
* is read-only, to permit applications using only the DOM API to obtain
* editable copies of locked portions of the tree.
*/
public Node cloneNode(boolean deep) {
if (needsSyncChildren()) {
synchronizeChildren();
}
ParentNode newnode = (ParentNode) super.cloneNode(deep);
// set owner document
newnode.ownerDocument = ownerDocument;
// Need to break the association w/ original kids
newnode.firstChild = null;
// invalidate cache for children NodeList
newnode.fNodeListCache = null;
// Then, if deep, clone the kids too.
if (deep) {
for (ChildNode child = firstChild;
child != null;
child = child.nextSibling) {
newnode.appendChild(child.cloneNode(true));
}
}
return newnode;
} // cloneNode(boolean):Node
Find the Document that this Node belongs to (the document in
whose context the Node was created). The Node may or may not
currently be part of that Document's actual contents.
/**
* Find the Document that this Node belongs to (the document in
* whose context the Node was created). The Node may or may not
* currently be part of that Document's actual contents.
*/
public Document getOwnerDocument() {
return ownerDocument;
}
same as above but returns internal type and this one is not overridden
by CoreDocumentImpl to return null
/**
* same as above but returns internal type and this one is not overridden
* by CoreDocumentImpl to return null
*/
CoreDocumentImpl ownerDocument() {
return ownerDocument;
}
NON-DOM
set the ownerDocument of this node and its children
/**
* NON-DOM
* set the ownerDocument of this node and its children
*/
void setOwnerDocument(CoreDocumentImpl doc) {
if (needsSyncChildren()) {
synchronizeChildren();
}
for (ChildNode child = firstChild;
child != null; child = child.nextSibling) {
child.setOwnerDocument(doc);
}
/* setting the owner document of self, after it's children makes the
data of children available to the new document. */
super.setOwnerDocument(doc);
ownerDocument = doc;
}
Test whether this node has any children. Convenience shorthand
for (Node.getFirstChild()!=null)
/**
* Test whether this node has any children. Convenience shorthand
* for (Node.getFirstChild()!=null)
*/
public boolean hasChildNodes() {
if (needsSyncChildren()) {
synchronizeChildren();
}
return firstChild != null;
}
Obtain a NodeList enumerating all children of this node. If there
are none, an (initially) empty NodeList is returned.
NodeLists are "live"; as children are added/removed the NodeList
will immediately reflect those changes. Also, the NodeList refers
to the actual nodes, so changes to those nodes made via the DOM tree
will be reflected in the NodeList and vice versa.
In this implementation, Nodes implement the NodeList interface and
provide their own getChildNodes() support. Other DOMs may solve this
differently.
/**
* Obtain a NodeList enumerating all children of this node. If there
* are none, an (initially) empty NodeList is returned.
* <p>
* NodeLists are "live"; as children are added/removed the NodeList
* will immediately reflect those changes. Also, the NodeList refers
* to the actual nodes, so changes to those nodes made via the DOM tree
* will be reflected in the NodeList and vice versa.
* <p>
* In this implementation, Nodes implement the NodeList interface and
* provide their own getChildNodes() support. Other DOMs may solve this
* differently.
*/
public NodeList getChildNodes() {
if (needsSyncChildren()) {
synchronizeChildren();
}
return this;
} // getChildNodes():NodeList
The first child of this Node, or null if none. /** The first child of this Node, or null if none. */
public Node getFirstChild() {
if (needsSyncChildren()) {
synchronizeChildren();
}
return firstChild;
} // getFirstChild():Node
The last child of this Node, or null if none. /** The last child of this Node, or null if none. */
public Node getLastChild() {
if (needsSyncChildren()) {
synchronizeChildren();
}
return lastChild();
} // getLastChild():Node
final ChildNode lastChild() {
// last child is stored as the previous sibling of first child
return firstChild != null ? firstChild.previousSibling : null;
}
final void lastChild(ChildNode node) {
// store lastChild as previous sibling of first child
if (firstChild != null) {
firstChild.previousSibling = node;
}
}
Move one or more node(s) to our list of children. Note that this
implicitly removes them from their previous parent.
Params: - newChild – The Node to be moved to our subtree. As a
convenience feature, inserting a DocumentNode will instead insert
all its children.
- refChild – Current child which newChild should be placed
immediately before. If refChild is null, the insertion occurs
after all existing Nodes, like appendChild().
Throws: - DOMException – (HIERARCHY_REQUEST_ERR) if newChild is of a
type that shouldn't be a child of this node, or if newChild is an
ancestor of this node.
- DOMException – (WRONG_DOCUMENT_ERR) if newChild has a
different owner document than we do.
- DOMException – (NOT_FOUND_ERR) if refChild is not a child of
this node.
- DOMException – (NO_MODIFICATION_ALLOWED_ERR) if this node is
read-only.
Returns: newChild, in its new state (relocated, or emptied in the case of
DocumentNode.)
/**
* Move one or more node(s) to our list of children. Note that this
* implicitly removes them from their previous parent.
*
* @param newChild The Node to be moved to our subtree. As a
* convenience feature, inserting a DocumentNode will instead insert
* all its children.
*
* @param refChild Current child which newChild should be placed
* immediately before. If refChild is null, the insertion occurs
* after all existing Nodes, like appendChild().
*
* @return newChild, in its new state (relocated, or emptied in the case of
* DocumentNode.)
*
* @throws DOMException(HIERARCHY_REQUEST_ERR) if newChild is of a
* type that shouldn't be a child of this node, or if newChild is an
* ancestor of this node.
*
* @throws DOMException(WRONG_DOCUMENT_ERR) if newChild has a
* different owner document than we do.
*
* @throws DOMException(NOT_FOUND_ERR) if refChild is not a child of
* this node.
*
* @throws DOMException(NO_MODIFICATION_ALLOWED_ERR) if this node is
* read-only.
*/
public Node insertBefore(Node newChild, Node refChild)
throws DOMException {
// Tail-call; optimizer should be able to do good things with.
return internalInsertBefore(newChild, refChild, false);
} // insertBefore(Node,Node):Node
NON-DOM INTERNAL: Within DOM actions,we sometimes need to be able
to control which mutation events are spawned. This version of the
insertBefore operation allows us to do so. It is not intended
for use by application programs.
/** NON-DOM INTERNAL: Within DOM actions,we sometimes need to be able
* to control which mutation events are spawned. This version of the
* insertBefore operation allows us to do so. It is not intended
* for use by application programs.
*/
Node internalInsertBefore(Node newChild, Node refChild, boolean replace)
throws DOMException {
boolean errorChecking = ownerDocument.errorChecking;
if (newChild.getNodeType() == Node.DOCUMENT_FRAGMENT_NODE) {
// SLOW BUT SAFE: We could insert the whole subtree without
// juggling so many next/previous pointers. (Wipe out the
// parent's child-list, patch the parent pointers, set the
// ends of the list.) But we know some subclasses have special-
// case behavior they add to insertBefore(), so we don't risk it.
// This approch also takes fewer bytecodes.
// NOTE: If one of the children is not a legal child of this
// node, throw HIERARCHY_REQUEST_ERR before _any_ of the children
// have been transferred. (Alternative behaviors would be to
// reparent up to the first failure point or reparent all those
// which are acceptable to the target node, neither of which is
// as robust. PR-DOM-0818 isn't entirely clear on which it
// recommends?????
// No need to check kids for right-document; if they weren't,
// they wouldn't be kids of that DocFrag.
if (errorChecking) {
for (Node kid = newChild.getFirstChild(); // Prescan
kid != null; kid = kid.getNextSibling()) {
if (!ownerDocument.isKidOK(this, kid)) {
throw new DOMException(
DOMException.HIERARCHY_REQUEST_ERR,
DOMMessageFormatter.formatMessage(DOMMessageFormatter.DOM_DOMAIN, "HIERARCHY_REQUEST_ERR", null));
}
}
}
while (newChild.hasChildNodes()) {
insertBefore(newChild.getFirstChild(), refChild);
}
return newChild;
}
if (newChild == refChild) {
// stupid case that must be handled as a no-op triggering events...
refChild = refChild.getNextSibling();
removeChild(newChild);
insertBefore(newChild, refChild);
return newChild;
}
if (needsSyncChildren()) {
synchronizeChildren();
}
if (errorChecking) {
if (isReadOnly()) {
throw new DOMException(
DOMException.NO_MODIFICATION_ALLOWED_ERR,
DOMMessageFormatter.formatMessage(DOMMessageFormatter.DOM_DOMAIN, "NO_MODIFICATION_ALLOWED_ERR", null));
}
if (newChild.getOwnerDocument() != ownerDocument && newChild != ownerDocument) {
throw new DOMException(DOMException.WRONG_DOCUMENT_ERR,
DOMMessageFormatter.formatMessage(DOMMessageFormatter.DOM_DOMAIN, "WRONG_DOCUMENT_ERR", null));
}
if (!ownerDocument.isKidOK(this, newChild)) {
throw new DOMException(DOMException.HIERARCHY_REQUEST_ERR,
DOMMessageFormatter.formatMessage(DOMMessageFormatter.DOM_DOMAIN, "HIERARCHY_REQUEST_ERR", null));
}
// refChild must be a child of this node (or null)
if (refChild != null && refChild.getParentNode() != this) {
throw new DOMException(DOMException.NOT_FOUND_ERR,
DOMMessageFormatter.formatMessage(DOMMessageFormatter.DOM_DOMAIN, "NOT_FOUND_ERR", null));
}
// Prevent cycles in the tree
// newChild cannot be ancestor of this Node,
// and actually cannot be this
if (ownerDocument.ancestorChecking) {
boolean treeSafe = true;
for (NodeImpl a = this; treeSafe && a != null; a = a.parentNode())
{
treeSafe = newChild != a;
}
if(!treeSafe) {
throw new DOMException(DOMException.HIERARCHY_REQUEST_ERR,
DOMMessageFormatter.formatMessage(DOMMessageFormatter.DOM_DOMAIN, "HIERARCHY_REQUEST_ERR", null));
}
}
}
// notify document
ownerDocument.insertingNode(this, replace);
// Convert to internal type, to avoid repeated casting
ChildNode newInternal = (ChildNode)newChild;
Node oldparent = newInternal.parentNode();
if (oldparent != null) {
oldparent.removeChild(newInternal);
}
// Convert to internal type, to avoid repeated casting
ChildNode refInternal = (ChildNode)refChild;
// Attach up
newInternal.ownerNode = this;
newInternal.isOwned(true);
// Attach before and after
// Note: firstChild.previousSibling == lastChild!!
if (firstChild == null) {
// this our first and only child
firstChild = newInternal;
newInternal.isFirstChild(true);
newInternal.previousSibling = newInternal;
}
else {
if (refInternal == null) {
// this is an append
ChildNode lastChild = firstChild.previousSibling;
lastChild.nextSibling = newInternal;
newInternal.previousSibling = lastChild;
firstChild.previousSibling = newInternal;
}
else {
// this is an insert
if (refChild == firstChild) {
// at the head of the list
firstChild.isFirstChild(false);
newInternal.nextSibling = firstChild;
newInternal.previousSibling = firstChild.previousSibling;
firstChild.previousSibling = newInternal;
firstChild = newInternal;
newInternal.isFirstChild(true);
}
else {
// somewhere in the middle
ChildNode prev = refInternal.previousSibling;
newInternal.nextSibling = refInternal;
prev.nextSibling = newInternal;
refInternal.previousSibling = newInternal;
newInternal.previousSibling = prev;
}
}
}
changed();
// update cached length if we have any
if (fNodeListCache != null) {
if (fNodeListCache.fLength != -1) {
fNodeListCache.fLength++;
}
if (fNodeListCache.fChildIndex != -1) {
// if we happen to insert just before the cached node, update
// the cache to the new node to match the cached index
if (fNodeListCache.fChild == refInternal) {
fNodeListCache.fChild = newInternal;
} else {
// otherwise just invalidate the cache
fNodeListCache.fChildIndex = -1;
}
}
}
// notify document
ownerDocument.insertedNode(this, newInternal, replace);
checkNormalizationAfterInsert(newInternal);
return newChild;
} // internalInsertBefore(Node,Node,boolean):Node
Remove a child from this Node. The removed child's subtree
remains intact so it may be re-inserted elsewhere.
Throws: - DOMException – (NOT_FOUND_ERR) if oldChild is not a child of
this node.
- DOMException – (NO_MODIFICATION_ALLOWED_ERR) if this node is
read-only.
Returns: oldChild, in its new state (removed).
/**
* Remove a child from this Node. The removed child's subtree
* remains intact so it may be re-inserted elsewhere.
*
* @return oldChild, in its new state (removed).
*
* @throws DOMException(NOT_FOUND_ERR) if oldChild is not a child of
* this node.
*
* @throws DOMException(NO_MODIFICATION_ALLOWED_ERR) if this node is
* read-only.
*/
public Node removeChild(Node oldChild)
throws DOMException {
// Tail-call, should be optimizable
return internalRemoveChild(oldChild, false);
} // removeChild(Node) :Node
NON-DOM INTERNAL: Within DOM actions,we sometimes need to be able
to control which mutation events are spawned. This version of the
removeChild operation allows us to do so. It is not intended
for use by application programs.
/** NON-DOM INTERNAL: Within DOM actions,we sometimes need to be able
* to control which mutation events are spawned. This version of the
* removeChild operation allows us to do so. It is not intended
* for use by application programs.
*/
Node internalRemoveChild(Node oldChild, boolean replace)
throws DOMException {
CoreDocumentImpl ownerDocument = ownerDocument();
if (ownerDocument.errorChecking) {
if (isReadOnly()) {
throw new DOMException(
DOMException.NO_MODIFICATION_ALLOWED_ERR,
DOMMessageFormatter.formatMessage(DOMMessageFormatter.DOM_DOMAIN, "NO_MODIFICATION_ALLOWED_ERR", null));
}
if (oldChild != null && oldChild.getParentNode() != this) {
throw new DOMException(DOMException.NOT_FOUND_ERR,
DOMMessageFormatter.formatMessage(DOMMessageFormatter.DOM_DOMAIN, "NOT_FOUND_ERR", null));
}
}
ChildNode oldInternal = (ChildNode) oldChild;
// notify document
ownerDocument.removingNode(this, oldInternal, replace);
// update cached length if we have any
if (fNodeListCache != null) {
if (fNodeListCache.fLength != -1) {
fNodeListCache.fLength--;
}
if (fNodeListCache.fChildIndex != -1) {
// if the removed node is the cached node
// move the cache to its (soon former) previous sibling
if (fNodeListCache.fChild == oldInternal) {
fNodeListCache.fChildIndex--;
fNodeListCache.fChild = oldInternal.previousSibling();
} else {
// otherwise just invalidate the cache
fNodeListCache.fChildIndex = -1;
}
}
}
// Patch linked list around oldChild
// Note: lastChild == firstChild.previousSibling
if (oldInternal == firstChild) {
// removing first child
oldInternal.isFirstChild(false);
firstChild = oldInternal.nextSibling;
if (firstChild != null) {
firstChild.isFirstChild(true);
firstChild.previousSibling = oldInternal.previousSibling;
}
} else {
ChildNode prev = oldInternal.previousSibling;
ChildNode next = oldInternal.nextSibling;
prev.nextSibling = next;
if (next == null) {
// removing last child
firstChild.previousSibling = prev;
} else {
// removing some other child in the middle
next.previousSibling = prev;
}
}
// Save previous sibling for normalization checking.
ChildNode oldPreviousSibling = oldInternal.previousSibling();
// Remove oldInternal's references to tree
oldInternal.ownerNode = ownerDocument;
oldInternal.isOwned(false);
oldInternal.nextSibling = null;
oldInternal.previousSibling = null;
changed();
// notify document
ownerDocument.removedNode(this, replace);
checkNormalizationAfterRemove(oldPreviousSibling);
return oldInternal;
} // internalRemoveChild(Node,boolean):Node
Make newChild occupy the location that oldChild used to
have. Note that newChild will first be removed from its previous
parent, if any. Equivalent to inserting newChild before oldChild,
then removing oldChild.
Throws: - DOMException – (HIERARCHY_REQUEST_ERR) if newChild is of a
type that shouldn't be a child of this node, or if newChild is
one of our ancestors.
- DOMException – (WRONG_DOCUMENT_ERR) if newChild has a
different owner document than we do.
- DOMException – (NOT_FOUND_ERR) if oldChild is not a child of
this node.
- DOMException – (NO_MODIFICATION_ALLOWED_ERR) if this node is
read-only.
Returns: oldChild, in its new state (removed).
/**
* Make newChild occupy the location that oldChild used to
* have. Note that newChild will first be removed from its previous
* parent, if any. Equivalent to inserting newChild before oldChild,
* then removing oldChild.
*
* @return oldChild, in its new state (removed).
*
* @throws DOMException(HIERARCHY_REQUEST_ERR) if newChild is of a
* type that shouldn't be a child of this node, or if newChild is
* one of our ancestors.
*
* @throws DOMException(WRONG_DOCUMENT_ERR) if newChild has a
* different owner document than we do.
*
* @throws DOMException(NOT_FOUND_ERR) if oldChild is not a child of
* this node.
*
* @throws DOMException(NO_MODIFICATION_ALLOWED_ERR) if this node is
* read-only.
*/
public Node replaceChild(Node newChild, Node oldChild)
throws DOMException {
// If Mutation Events are being generated, this operation might
// throw aggregate events twice when modifying an Attr -- once
// on insertion and once on removal. DOM Level 2 does not specify
// this as either desirable or undesirable, but hints that
// aggregations should be issued only once per user request.
// notify document
ownerDocument.replacingNode(this);
internalInsertBefore(newChild, oldChild, true);
if (newChild != oldChild) {
internalRemoveChild(oldChild, true);
}
// notify document
ownerDocument.replacedNode(this);
return oldChild;
}
/*
* Get Node text content
* @since DOM Level 3
*/
public String getTextContent() throws DOMException {
Node child = getFirstChild();
if (child != null) {
Node next = child.getNextSibling();
if (next == null) {
return hasTextContent(child) ? ((NodeImpl) child).getTextContent() : "";
}
if (fBufferStr == null){
fBufferStr = new StringBuffer();
}
else {
fBufferStr.setLength(0);
}
getTextContent(fBufferStr);
return fBufferStr.toString();
}
return "";
}
// internal method taking a StringBuffer in parameter
void getTextContent(StringBuffer buf) throws DOMException {
Node child = getFirstChild();
while (child != null) {
if (hasTextContent(child)) {
((NodeImpl) child).getTextContent(buf);
}
child = child.getNextSibling();
}
}
// internal method returning whether to take the given node's text content
final boolean hasTextContent(Node child) {
return child.getNodeType() != Node.COMMENT_NODE &&
child.getNodeType() != Node.PROCESSING_INSTRUCTION_NODE &&
(child.getNodeType() != Node.TEXT_NODE ||
((TextImpl) child).isIgnorableWhitespace() == false);
}
/*
* Set Node text content
* @since DOM Level 3
*/
public void setTextContent(String textContent)
throws DOMException {
// get rid of any existing children
Node child;
while ((child = getFirstChild()) != null) {
removeChild(child);
}
// create a Text node to hold the given content
if (textContent != null && textContent.length() != 0){
appendChild(ownerDocument().createTextNode(textContent));
}
}
//
// NodeList methods
//
Count the immediate children of this node. Use to implement
NodeList.getLength().
Returns: int
/**
* Count the immediate children of this node. Use to implement
* NodeList.getLength().
* @return int
*/
private int nodeListGetLength() {
if (fNodeListCache == null) {
// get rid of trivial cases
if (firstChild == null) {
return 0;
}
if (firstChild == lastChild()) {
return 1;
}
// otherwise request a cache object
fNodeListCache = ownerDocument.getNodeListCache(this);
}
if (fNodeListCache.fLength == -1) { // is the cached length invalid ?
int l;
ChildNode n;
// start from the cached node if we have one
if (fNodeListCache.fChildIndex != -1 &&
fNodeListCache.fChild != null) {
l = fNodeListCache.fChildIndex;
n = fNodeListCache.fChild;
} else {
n = firstChild;
l = 0;
}
while (n != null) {
l++;
n = n.nextSibling;
}
fNodeListCache.fLength = l;
}
return fNodeListCache.fLength;
} // nodeListGetLength():int
NodeList method: Count the immediate children of this node
Returns: int
/**
* NodeList method: Count the immediate children of this node
* @return int
*/
public int getLength() {
return nodeListGetLength();
}
Return the Nth immediate child of this node, or null if the index is
out of bounds. Use to implement NodeList.item().
Params: - index – int
/**
* Return the Nth immediate child of this node, or null if the index is
* out of bounds. Use to implement NodeList.item().
* @param index int
*/
private Node nodeListItem(int index) {
if (fNodeListCache == null) {
// get rid of trivial case
if (firstChild == lastChild()) {
return index == 0 ? firstChild : null;
}
// otherwise request a cache object
fNodeListCache = ownerDocument.getNodeListCache(this);
}
int i = fNodeListCache.fChildIndex;
ChildNode n = fNodeListCache.fChild;
boolean firstAccess = true;
// short way
if (i != -1 && n != null) {
firstAccess = false;
if (i < index) {
while (i < index && n != null) {
i++;
n = n.nextSibling;
}
}
else if (i > index) {
while (i > index && n != null) {
i--;
n = n.previousSibling();
}
}
}
else {
// long way
if (index < 0) {
return null;
}
n = firstChild;
for (i = 0; i < index && n != null; i++) {
n = n.nextSibling;
}
}
// release cache if reaching last child or first child
if (!firstAccess && (n == firstChild || n == lastChild())) {
fNodeListCache.fChildIndex = -1;
fNodeListCache.fChild = null;
ownerDocument.freeNodeListCache(fNodeListCache);
// we can keep using the cache until it is actually reused
// fNodeListCache will be nulled by the pool (document) if that
// happens.
// fNodeListCache = null;
}
else {
// otherwise update it
fNodeListCache.fChildIndex = i;
fNodeListCache.fChild = n;
}
return n;
} // nodeListItem(int):Node
NodeList method: Return the Nth immediate child of this node, or
null if the index is out of bounds.
Params: - index – int
Returns: org.w3c.dom.Node
/**
* NodeList method: Return the Nth immediate child of this node, or
* null if the index is out of bounds.
* @return org.w3c.dom.Node
* @param index int
*/
public Node item(int index) {
return nodeListItem(index);
} // item(int):Node
Create a NodeList to access children that is use by subclass elements
that have methods named getLength() or item(int). ChildAndParentNode
optimizes getChildNodes() by implementing NodeList itself. However if
a subclass Element implements methods with the same name as the NodeList
methods, they will override the actually methods in this class.
To use this method, the subclass should implement getChildNodes() and
have it call this method. The resulting NodeList instance maybe
shared and cached in a transient field, but the cached value must be
cleared if the node is cloned.
/**
* Create a NodeList to access children that is use by subclass elements
* that have methods named getLength() or item(int). ChildAndParentNode
* optimizes getChildNodes() by implementing NodeList itself. However if
* a subclass Element implements methods with the same name as the NodeList
* methods, they will override the actually methods in this class.
* <p>
* To use this method, the subclass should implement getChildNodes() and
* have it call this method. The resulting NodeList instance maybe
* shared and cached in a transient field, but the cached value must be
* cleared if the node is cloned.
*/
protected final NodeList getChildNodesUnoptimized() {
if (needsSyncChildren()) {
synchronizeChildren();
}
return new NodeList() {
See Also: - NodeList.getLength()
/**
* @see NodeList.getLength()
*/
public int getLength() {
return nodeListGetLength();
} // getLength():int
See Also: - NodeList.item(int)
/**
* @see NodeList.item(int)
*/
public Node item(int index) {
return nodeListItem(index);
} // item(int):Node
};
} // getChildNodesUnoptimized():NodeList
//
// DOM2: methods, getters, setters
//
Override default behavior to call normalize() on this Node's
children. It is up to implementors or Node to override normalize()
to take action.
/**
* Override default behavior to call normalize() on this Node's
* children. It is up to implementors or Node to override normalize()
* to take action.
*/
public void normalize() {
// No need to normalize if already normalized.
if (isNormalized()) {
return;
}
if (needsSyncChildren()) {
synchronizeChildren();
}
ChildNode kid;
for (kid = firstChild; kid != null; kid = kid.nextSibling) {
kid.normalize();
}
isNormalized(true);
}
DOM Level 3 WD- Experimental.
Override inherited behavior from NodeImpl to support deep equal.
/**
* DOM Level 3 WD- Experimental.
* Override inherited behavior from NodeImpl to support deep equal.
*/
public boolean isEqualNode(Node arg) {
if (!super.isEqualNode(arg)) {
return false;
}
// there are many ways to do this test, and there isn't any way
// better than another. Performance may vary greatly depending on
// the implementations involved. This one should work fine for us.
Node child1 = getFirstChild();
Node child2 = arg.getFirstChild();
while (child1 != null && child2 != null) {
if (!((NodeImpl) child1).isEqualNode(child2)) {
return false;
}
child1 = child1.getNextSibling();
child2 = child2.getNextSibling();
}
if (child1 != child2) {
return false;
}
return true;
}
//
// Public methods
//
Override default behavior so that if deep is true, children are also
toggled.
See Also:
Note: this will not change the state of an EntityReference or its
children, which are always read-only.
/**
* Override default behavior so that if deep is true, children are also
* toggled.
* @see Node
* <P>
* Note: this will not change the state of an EntityReference or its
* children, which are always read-only.
*/
public void setReadOnly(boolean readOnly, boolean deep) {
super.setReadOnly(readOnly, deep);
if (deep) {
if (needsSyncChildren()) {
synchronizeChildren();
}
// Recursively set kids
for (ChildNode mykid = firstChild;
mykid != null;
mykid = mykid.nextSibling) {
if (mykid.getNodeType() != Node.ENTITY_REFERENCE_NODE) {
mykid.setReadOnly(readOnly,true);
}
}
}
} // setReadOnly(boolean,boolean)
//
// Protected methods
//
Override this method in subclass to hook in efficient
internal data structure.
/**
* Override this method in subclass to hook in efficient
* internal data structure.
*/
protected void synchronizeChildren() {
// By default just change the flag to avoid calling this method again
needsSyncChildren(false);
}
Checks the normalized state of this node after inserting a child.
If the inserted child causes this node to be unnormalized, then this
node is flagged accordingly.
The conditions for changing the normalized state are:
- The inserted child is a text node and one of its adjacent siblings
is also a text node.
- The inserted child is is itself unnormalized.
Params: - insertedChild – the child node that was inserted into this node
Throws: - NullPointerException – if the inserted child is
null
/**
* Checks the normalized state of this node after inserting a child.
* If the inserted child causes this node to be unnormalized, then this
* node is flagged accordingly.
* The conditions for changing the normalized state are:
* <ul>
* <li>The inserted child is a text node and one of its adjacent siblings
* is also a text node.
* <li>The inserted child is is itself unnormalized.
* </ul>
*
* @param insertedChild the child node that was inserted into this node
*
* @throws NullPointerException if the inserted child is <code>null</code>
*/
void checkNormalizationAfterInsert(ChildNode insertedChild) {
// See if insertion caused this node to be unnormalized.
if (insertedChild.getNodeType() == Node.TEXT_NODE) {
ChildNode prev = insertedChild.previousSibling();
ChildNode next = insertedChild.nextSibling;
// If an adjacent sibling of the new child is a text node,
// flag this node as unnormalized.
if ((prev != null && prev.getNodeType() == Node.TEXT_NODE) ||
(next != null && next.getNodeType() == Node.TEXT_NODE)) {
isNormalized(false);
}
}
else {
// If the new child is not normalized,
// then this node is inherently not normalized.
if (!insertedChild.isNormalized()) {
isNormalized(false);
}
}
} // checkNormalizationAfterInsert(ChildNode)
Checks the normalized of this node after removing a child.
If the removed child causes this node to be unnormalized, then this
node is flagged accordingly.
The conditions for changing the normalized state are:
- The removed child had two adjacent siblings that were text nodes.
Params: - previousSibling – the previous sibling of the removed child, or
null
/**
* Checks the normalized of this node after removing a child.
* If the removed child causes this node to be unnormalized, then this
* node is flagged accordingly.
* The conditions for changing the normalized state are:
* <ul>
* <li>The removed child had two adjacent siblings that were text nodes.
* </ul>
*
* @param previousSibling the previous sibling of the removed child, or
* <code>null</code>
*/
void checkNormalizationAfterRemove(ChildNode previousSibling) {
// See if removal caused this node to be unnormalized.
// If the adjacent siblings of the removed child were both text nodes,
// flag this node as unnormalized.
if (previousSibling != null &&
previousSibling.getNodeType() == Node.TEXT_NODE) {
ChildNode next = previousSibling.nextSibling;
if (next != null && next.getNodeType() == Node.TEXT_NODE) {
isNormalized(false);
}
}
} // checkNormalizationAfterRemove(Node)
//
// Serialization methods
//
Serialize object. /** Serialize object. */
private void writeObject(ObjectOutputStream out) throws IOException {
// synchronize chilren
if (needsSyncChildren()) {
synchronizeChildren();
}
// write object
out.defaultWriteObject();
} // writeObject(ObjectOutputStream)
Deserialize object. /** Deserialize object. */
private void readObject(ObjectInputStream ois)
throws ClassNotFoundException, IOException {
// perform default deseralization
ois.defaultReadObject();
// hardset synchildren - so we don't try to sync - it does not make any
// sense to try to synchildren when we just deserialize object.
needsSyncChildren(false);
} // readObject(ObjectInputStream)
/*
* a class to store some user data along with its handler
*/
protected class UserDataRecord implements Serializable {
Serialization version. /** Serialization version. */
private static final long serialVersionUID = 3258126977134310455L;
Object fData;
UserDataHandler fHandler;
UserDataRecord(Object data, UserDataHandler handler) {
fData = data;
fHandler = handler;
}
}
} // class ParentNode