/*
* Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package sun.security.jgss.krb5;
import org.ietf.jgss.*;
import sun.security.jgss.*;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.IOException;
import java.io.ByteArrayOutputStream;
import java.util.Arrays;
import sun.security.krb5.Confounder;
This class represents the new format of GSS tokens, as specified in RFC
4121, emitted by the GSSContext.wrap() call. It is a MessageToken except
that it also contains plaintext or encrypted data at the end. A WrapToken
has certain other rules that are peculiar to it and different from a
MICToken, which is another type of MessageToken. All data in a WrapToken is
prepended by a random confounder of 16 bytes. Thus, all application data
is replaced by (confounder || data || tokenHeader || checksum).
Author: Seema Malkani
/**
* This class represents the new format of GSS tokens, as specified in RFC
* 4121, emitted by the GSSContext.wrap() call. It is a MessageToken except
* that it also contains plaintext or encrypted data at the end. A WrapToken
* has certain other rules that are peculiar to it and different from a
* MICToken, which is another type of MessageToken. All data in a WrapToken is
* prepended by a random confounder of 16 bytes. Thus, all application data
* is replaced by (confounder || data || tokenHeader || checksum).
*
* @author Seema Malkani
*/
class WrapToken_v2 extends MessageToken_v2 {
// Accessed by CipherHelper
byte[] confounder = null;
private final boolean privacy;
Constructs a WrapToken from token bytes obtained from the
peer.
Params: - context – the mechanism context associated with this
token
- tokenBytes – the bytes of the token
- tokenOffset – the offset of the token
- tokenLen – the length of the token
- prop – the MessageProp into which characteristics of the
parsed token will be stored.
Throws: - GSSException – if the token is defective
/**
* Constructs a WrapToken from token bytes obtained from the
* peer.
* @param context the mechanism context associated with this
* token
* @param tokenBytes the bytes of the token
* @param tokenOffset the offset of the token
* @param tokenLen the length of the token
* @param prop the MessageProp into which characteristics of the
* parsed token will be stored.
* @throws GSSException if the token is defective
*/
public WrapToken_v2(Krb5Context context,
byte[] tokenBytes, int tokenOffset, int tokenLen,
MessageProp prop) throws GSSException {
super(Krb5Token.WRAP_ID_v2, context,
tokenBytes, tokenOffset, tokenLen, prop);
this.privacy = prop.getPrivacy();
}
Constructs a WrapToken from token bytes read on the fly from
an InputStream.
Params: - context – the mechanism context associated with this
token
- is – the InputStream containing the token bytes
- prop – the MessageProp into which characteristics of the
parsed token will be stored.
Throws: - GSSException – if the token is defective or if there is
a problem reading from the InputStream
/**
* Constructs a WrapToken from token bytes read on the fly from
* an InputStream.
* @param context the mechanism context associated with this
* token
* @param is the InputStream containing the token bytes
* @param prop the MessageProp into which characteristics of the
* parsed token will be stored.
* @throws GSSException if the token is defective or if there is
* a problem reading from the InputStream
*/
public WrapToken_v2(Krb5Context context,
InputStream is, MessageProp prop)
throws GSSException {
super(Krb5Token.WRAP_ID_v2, context, is, prop);
this.privacy = prop.getPrivacy();
}
Obtains the application data that was transmitted in this
WrapToken.
Throws: - GSSException – if an error occurs while decrypting any
cipher text and checking for validity
Returns: a byte array containing the application data
/**
* Obtains the application data that was transmitted in this
* WrapToken.
* @return a byte array containing the application data
* @throws GSSException if an error occurs while decrypting any
* cipher text and checking for validity
*/
public byte[] getData() throws GSSException {
byte[] temp = new byte[tokenDataLen];
int len = getData(temp, 0);
return Arrays.copyOf(temp, len);
}
Obtains the application data that was transmitted in this
WrapToken, writing it into an application provided output
array.
Params: - dataBuf – the output buffer into which the data must be
written
- dataBufOffset – the offset at which to write the data
Throws: - GSSException – if an error occurs while decrypting any
cipher text and checking for validity
Returns: the size of the data written
/**
* Obtains the application data that was transmitted in this
* WrapToken, writing it into an application provided output
* array.
* @param dataBuf the output buffer into which the data must be
* written
* @param dataBufOffset the offset at which to write the data
* @return the size of the data written
* @throws GSSException if an error occurs while decrypting any
* cipher text and checking for validity
*/
public int getData(byte[] dataBuf, int dataBufOffset)
throws GSSException {
// debug("WrapToken cons: data is token is [" +
// getHexBytes(tokenBytes, tokenOffset, tokenLen) + "]\n");
// Do decryption if this token was privacy protected.
if (privacy) {
// decrypt data
cipherHelper.decryptData(this, tokenData, 0, tokenDataLen,
dataBuf, dataBufOffset, getKeyUsage());
return tokenDataLen - CONFOUNDER_SIZE -
TOKEN_HEADER_SIZE - cipherHelper.getChecksumLength();
} else {
// Token data is in cleartext
// debug("\t\tNo encryption was performed by peer.\n");
// data
int data_length = tokenDataLen - cipherHelper.getChecksumLength();
System.arraycopy(tokenData, 0,
dataBuf, dataBufOffset,
data_length);
// debug("\t\tData is: " + getHexBytes(dataBuf, data_length));
/*
* Make sure checksum is not corrupt
*/
if (!verifySign(dataBuf, dataBufOffset, data_length)) {
throw new GSSException(GSSException.BAD_MIC, -1,
"Corrupt checksum in Wrap token");
}
return data_length;
}
}
Writes a WrapToken_v2 object
/**
* Writes a WrapToken_v2 object
*/
public WrapToken_v2(Krb5Context context, MessageProp prop,
byte[] dataBytes, int dataOffset, int dataLen)
throws GSSException {
super(Krb5Token.WRAP_ID_v2, context);
confounder = Confounder.bytes(CONFOUNDER_SIZE);
// debug("\nWrapToken cons: data to wrap is [" +
// getHexBytes(confounder) + " " +
// getHexBytes(dataBytes, dataOffset, dataLen) + "]\n");
genSignAndSeqNumber(prop, dataBytes, dataOffset, dataLen);
/*
* If the application decides to ask for privacy when the context
* did not negotiate for it, do not provide it. The peer might not
* have support for it. The app will realize this with a call to
* pop.getPrivacy() after wrap().
*/
if (!context.getConfState())
prop.setPrivacy(false);
privacy = prop.getPrivacy();
if (!privacy) {
// Wrap Tokens (without confidentiality) =
// { 16 byte token_header | plaintext | 12-byte HMAC }
// where HMAC is on { plaintext | token_header }
tokenData = new byte[dataLen + checksum.length];
System.arraycopy(dataBytes, dataOffset, tokenData, 0, dataLen);
System.arraycopy(checksum, 0, tokenData, dataLen, checksum.length);
} else {
// Wrap Tokens (with confidentiality) =
// { 16 byte token_header |
// Encrypt(16-byte confounder | plaintext | token_header) |
// 12-byte HMAC }
tokenData = cipherHelper.encryptData(this, confounder, getTokenHeader(),
dataBytes, dataOffset, dataLen, getKeyUsage());
}
}
public void encode(OutputStream os) throws IOException {
encodeHeader(os);
os.write(tokenData);
}
public byte[] encode() throws IOException {
ByteArrayOutputStream bos = new ByteArrayOutputStream(
MessageToken_v2.TOKEN_HEADER_SIZE + tokenData.length);
encode(bos);
return bos.toByteArray();
}
public int encode(byte[] outToken, int offset) throws IOException {
byte[] token = encode();
System.arraycopy(token, 0, outToken, offset, token.length);
return token.length;
}
// This implementation is way to conservative. And it certainly
// doesn't return the maximum limit.
static int getSizeLimit(int qop, boolean confReq, int maxTokenSize,
CipherHelper ch) throws GSSException {
return (GSSHeader.getMaxMechTokenSize(OID, maxTokenSize) -
(TOKEN_HEADER_SIZE + ch.getChecksumLength() + CONFOUNDER_SIZE)
- 8 /* safety */);
}
}