/*
* Copyright (c) 2014, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package jdk.internal.net.http.hpack;
import jdk.internal.net.http.hpack.HPACK.Logger;
import java.util.Deque;
import java.util.HashMap;
import java.util.LinkedList;
import java.util.Map;
/*
* Adds reverse lookup to SimpleHeaderTable. Separated from SimpleHeaderTable
* for performance reasons. Decoder does not need this functionality. On the
* other hand, Encoder does.
*/
final class HeaderTable extends SimpleHeaderTable {
//
// To quickly find an index of an entry in the dynamic table with the given
// contents an effective inverse mapping is needed. Here's a simple idea
// behind such a mapping.
//
// # The problem:
//
// We have a queue with an O(1) lookup by index:
//
// get: index -> x
//
// What we want is an O(1) reverse lookup:
//
// indexOf: x -> index
//
// # Solution:
//
// Let's store an inverse mapping in a Map<x, Integer>. This have a problem
// that when a new element is added to the queue, all indexes in the map
// become invalid. Namely, the new element is assigned with an index of 1,
// and each index i, i > 1 becomes shifted by 1 to the left:
//
// 1, 1, 2, 3, ... , n-1, n
//
// Re-establishing the invariant would seem to require a pass through the
// map incrementing all indexes (map values) by 1, which is O(n).
//
// The good news is we can do much better then this!
//
// Let's create a single field of type long, called 'counter'. Then each
// time a new element 'x' is added to the queue, a value of this field gets
// incremented. Then the resulting value of the 'counter_x' is then put as a
// value under key 'x' to the map:
//
// map.put(x, counter_x)
//
// It gives us a map that maps an element to a value the counter had at the
// time the element had been added.
//
// In order to retrieve an index of any element 'x' in the queue (at any
// given time) we simply need to subtract the value (the snapshot of the
// counter at the time when the 'x' was added) from the current value of the
// counter. This operation basically answers the question:
//
// How many elements ago 'x' was the tail of the queue?
//
// Which is the same as its index in the queue now. Given, of course, it's
// still in the queue.
//
// I'm pretty sure in a real life long overflow will never happen, so it's
// not too practical to add recalibrating code, but a pedantic person might
// want to do so:
//
// if (counter == Long.MAX_VALUE) {
// recalibrate();
// }
//
// Where 'recalibrate()' goes through the table doing this:
//
// value -= counter
//
// That's given, of course, the size of the table itself is less than
// Long.MAX_VALUE :-)
//
/* An immutable map of static header fields' indexes */
private static final Map<String, Map<String, Integer>> staticIndexes;
static {
Map<String, Map<String, Integer>> map
= new HashMap<>(STATIC_TABLE_LENGTH);
for (int i = 1; i <= STATIC_TABLE_LENGTH; i++) {
HeaderField f = staticTable.get(i);
Map<String, Integer> values
= map.computeIfAbsent(f.name, k -> new HashMap<>());
values.put(f.value, i);
}
// create an immutable deep copy
Map<String, Map<String, Integer>> copy = new HashMap<>(map.size());
for (Map.Entry<String, Map<String, Integer>> e : map.entrySet()) {
copy.put(e.getKey(), Map.copyOf(e.getValue()));
}
staticIndexes = Map.copyOf(copy);
}
// name -> (value -> [index])
private final Map<String, Map<String, Deque<Long>>> map;
private long counter = 1;
public HeaderTable(int maxSize, Logger logger) {
super(maxSize, logger);
map = new HashMap<>();
}
//
// This method returns:
//
// * a positive integer i where i (i = [1..Integer.MAX_VALUE]) is an
// index of an entry with a header (n, v), where n.equals(name) &&
// v.equals(value)
//
// * a negative integer j where j (j = [-Integer.MAX_VALUE..-1]) is an
// index of an entry with a header (n, v), where n.equals(name)
//
// * 0 if there's no entry e such that e.getName().equals(name)
//
// The rationale behind this design is to allow to pack more useful data
// into a single invocation, facilitating a single pass where possible
// (the idea is the same as in java.util.Arrays.binarySearch(int[], int)).
//
public int indexOf(CharSequence name, CharSequence value) {
// Invoking toString() will possibly allocate Strings for the sake of
// the search, which doesn't feel right.
String n = name.toString();
String v = value.toString();
// 1. Try exact match in the static region
Map<String, Integer> values = staticIndexes.get(n);
if (values != null) {
Integer idx = values.get(v);
if (idx != null) {
return idx;
}
}
// 2. Try exact match in the dynamic region
int didx = search(n, v);
if (didx > 0) {
return STATIC_TABLE_LENGTH + didx;
} else if (didx < 0) {
if (values != null) {
// 3. Return name match from the static region
return -values.values().iterator().next(); // Iterator allocation
} else {
// 4. Return name match from the dynamic region
return -STATIC_TABLE_LENGTH + didx;
}
} else {
if (values != null) {
// 3. Return name match from the static region
return -values.values().iterator().next(); // Iterator allocation
} else {
return 0;
}
}
}
@Override
protected void add(HeaderField f) {
super.add(f);
Map<String, Deque<Long>> values = map.computeIfAbsent(f.name, k -> new HashMap<>());
Deque<Long> indexes = values.computeIfAbsent(f.value, k -> new LinkedList<>());
long counterSnapshot = counter++;
indexes.add(counterSnapshot);
assert indexesUniqueAndOrdered(indexes);
}
private boolean indexesUniqueAndOrdered(Deque<Long> indexes) {
long maxIndexSoFar = -1;
for (long l : indexes) {
if (l <= maxIndexSoFar) {
return false;
} else {
maxIndexSoFar = l;
}
}
return true;
}
int search(String name, String value) {
Map<String, Deque<Long>> values = map.get(name);
if (values == null) {
return 0;
}
Deque<Long> indexes = values.get(value);
if (indexes != null) {
return (int) (counter - indexes.peekLast());
} else {
assert !values.isEmpty();
Long any = values.values().iterator().next().peekLast(); // Iterator allocation
return -(int) (counter - any);
}
}
@Override
protected HeaderField remove() {
HeaderField f = super.remove();
Map<String, Deque<Long>> values = map.get(f.name);
Deque<Long> indexes = values.get(f.value);
Long index = indexes.pollFirst();
if (indexes.isEmpty()) {
values.remove(f.value);
}
assert index != null;
if (values.isEmpty()) {
map.remove(f.name);
}
return f;
}
}