/*
 * Copyright (c) 2003, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package sun.util.calendar;

import java.util.HashMap;
import java.util.Map;

public class CalendarUtils {

    
Returns whether the specified year is a leap year in the Gregorian calendar system.
Params:
  • gregorianYear – a Gregorian calendar year
See Also:
Returns:true if the given year is a leap year in the Gregorian calendar system.
/** * Returns whether the specified year is a leap year in the Gregorian * calendar system. * * @param gregorianYear a Gregorian calendar year * @return true if the given year is a leap year in the Gregorian * calendar system. * @see CalendarDate#isLeapYear */
public static final boolean isGregorianLeapYear(int gregorianYear) { return (((gregorianYear % 4) == 0) && (((gregorianYear % 100) != 0) || ((gregorianYear % 400) == 0))); }
Returns whether the specified year is a leap year in the Julian calendar system. The year number must be a normalized one (e.g., 45 B.C.E. is 1-45).
Params:
  • normalizedJulianYear – a normalized Julian calendar year
See Also:
Returns:true if the given year is a leap year in the Julian calendar system.
/** * Returns whether the specified year is a leap year in the Julian * calendar system. The year number must be a normalized one * (e.g., 45 B.C.E. is 1-45). * * @param normalizedJulianYear a normalized Julian calendar year * @return true if the given year is a leap year in the Julian * calendar system. * @see CalendarDate#isLeapYear */
public static final boolean isJulianLeapYear(int normalizedJulianYear) { return (normalizedJulianYear % 4) == 0; }
Divides two integers and returns the floor of the quotient. For example, floorDivide(-1, 4) returns -1 while -1/4 is 0.
Params:
  • n – the numerator
  • d – a divisor that must be greater than 0
Returns:the floor of the quotient
/** * Divides two integers and returns the floor of the quotient. * For example, <code>floorDivide(-1, 4)</code> returns -1 while * -1/4 is 0. * * @param n the numerator * @param d a divisor that must be greater than 0 * @return the floor of the quotient */
public static final long floorDivide(long n, long d) { return ((n >= 0) ? (n / d) : (((n + 1L) / d) - 1L)); }
Divides two integers and returns the floor of the quotient. For example, floorDivide(-1, 4) returns -1 while -1/4 is 0.
Params:
  • n – the numerator
  • d – a divisor that must be greater than 0
Returns:the floor of the quotient
/** * Divides two integers and returns the floor of the quotient. * For example, <code>floorDivide(-1, 4)</code> returns -1 while * -1/4 is 0. * * @param n the numerator * @param d a divisor that must be greater than 0 * @return the floor of the quotient */
public static final int floorDivide(int n, int d) { return ((n >= 0) ? (n / d) : (((n + 1) / d) - 1)); }
Divides two integers and returns the floor of the quotient and the modulus remainder. For example, floorDivide(-1,4) returns -1 with 3 as its remainder, while -1/4 is 0 and -1%4 is -1.
Params:
  • n – the numerator
  • d – a divisor which must be > 0
  • r – an array of at least one element in which the value mod(n, d) is returned.
Returns:the floor of the quotient.
/** * Divides two integers and returns the floor of the quotient and * the modulus remainder. For example, * <code>floorDivide(-1,4)</code> returns <code>-1</code> with * <code>3</code> as its remainder, while <code>-1/4</code> is * <code>0</code> and <code>-1%4</code> is <code>-1</code>. * * @param n the numerator * @param d a divisor which must be {@literal > 0} * @param r an array of at least one element in which the value * <code>mod(n, d)</code> is returned. * @return the floor of the quotient. */
public static final int floorDivide(int n, int d, int[] r) { if (n >= 0) { r[0] = n % d; return n / d; } int q = ((n + 1) / d) - 1; r[0] = n - (q * d); return q; }
Divides two integers and returns the floor of the quotient and the modulus remainder. For example, floorDivide(-1,4) returns -1 with 3 as its remainder, while -1/4 is 0 and -1%4 is -1.
Params:
  • n – the numerator
  • d – a divisor which must be > 0
  • r – an array of at least one element in which the value mod(n, d) is returned.
Returns:the floor of the quotient.
/** * Divides two integers and returns the floor of the quotient and * the modulus remainder. For example, * <code>floorDivide(-1,4)</code> returns <code>-1</code> with * <code>3</code> as its remainder, while <code>-1/4</code> is * <code>0</code> and <code>-1%4</code> is <code>-1</code>. * * @param n the numerator * @param d a divisor which must be {@literal > 0} * @param r an array of at least one element in which the value * <code>mod(n, d)</code> is returned. * @return the floor of the quotient. */
public static final int floorDivide(long n, int d, int[] r) { if (n >= 0) { r[0] = (int)(n % d); return (int)(n / d); } int q = (int)(((n + 1) / d) - 1); r[0] = (int)(n - (q * d)); return q; } public static final long mod(long x, long y) { return (x - y * floorDivide(x, y)); } public static final int mod(int x, int y) { return (x - y * floorDivide(x, y)); } public static final int amod(int x, int y) { int z = mod(x, y); return (z == 0) ? y : z; } public static final long amod(long x, long y) { long z = mod(x, y); return (z == 0) ? y : z; }
Mimics sprintf(buf, "%0*d", decaimal, width).
/** * Mimics sprintf(buf, "%0*d", decaimal, width). */
public static final StringBuilder sprintf0d(StringBuilder sb, int value, int width) { long d = value; if (d < 0) { sb.append('-'); d = -d; --width; } int n = 10; for (int i = 2; i < width; i++) { n *= 10; } for (int i = 1; i < width && d < n; i++) { sb.append('0'); n /= 10; } sb.append(d); return sb; } public static final StringBuffer sprintf0d(StringBuffer sb, int value, int width) { long d = value; if (d < 0) { sb.append('-'); d = -d; --width; } int n = 10; for (int i = 2; i < width; i++) { n *= 10; } for (int i = 1; i < width && d < n; i++) { sb.append('0'); n /= 10; } sb.append(d); return sb; } }