/*
* Copyright (c) 2012, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package sun.security.ssl;
import java.nio.ByteBuffer;
import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;
import java.util.Arrays;
import javax.crypto.Mac;
import javax.crypto.SecretKey;
import sun.security.ssl.CipherSuite.MacAlg;
This class represents an SSL/TLS/DTLS message authentication token,
which encapsulates a sequence number and ensures that attempts to
delete or reorder messages can be detected.
/**
* This class represents an SSL/TLS/DTLS message authentication token,
* which encapsulates a sequence number and ensures that attempts to
* delete or reorder messages can be detected.
*/
abstract class Authenticator {
// byte array containing the additional authentication information for
// each record
protected final byte[] block; // at least 8 bytes for sequence number
private Authenticator(byte[] block) {
this.block = block;
}
Constructs the message authentication token for the specified
SSL/TLS protocol.
/**
* Constructs the message authentication token for the specified
* SSL/TLS protocol.
*/
static Authenticator valueOf(ProtocolVersion protocolVersion) {
if (protocolVersion.isDTLS) {
if (protocolVersion.useTLS13PlusSpec()) {
return new DTLS13Authenticator(protocolVersion);
} else {
return new DTLS10Authenticator(protocolVersion);
}
} else {
if (protocolVersion.useTLS13PlusSpec()) {
return new TLS13Authenticator(protocolVersion);
} else if (protocolVersion.useTLS10PlusSpec()) {
return new TLS10Authenticator(protocolVersion);
} else {
return new SSL30Authenticator();
}
}
}
@SuppressWarnings({"unchecked"})
static <T extends Authenticator & MAC> T
valueOf(ProtocolVersion protocolVersion, MacAlg macAlg,
SecretKey key) throws NoSuchAlgorithmException,
InvalidKeyException {
if (protocolVersion.isDTLS) {
if (protocolVersion.useTLS13PlusSpec()) {
throw new RuntimeException("No MacAlg used in DTLS 1.3");
} else {
return (T)(new DTLS10Mac(protocolVersion, macAlg, key));
}
} else {
if (protocolVersion.useTLS13PlusSpec()) {
throw new RuntimeException("No MacAlg used in TLS 1.3");
} else if (protocolVersion.useTLS10PlusSpec()) {
return (T)(new TLS10Mac(protocolVersion, macAlg, key));
} else {
return (T)(new SSL30Mac(protocolVersion, macAlg, key));
}
}
}
static Authenticator nullTlsMac() {
return new SSLNullMac();
}
static Authenticator nullDtlsMac() {
return new DTLSNullMac();
}
Checks whether the sequence number is close to wrap.
Sequence numbers are of type uint64 and may not exceed 2^64-1.
Sequence numbers do not wrap. When the sequence number is near
to wrap, we need to close the connection immediately.
Returns: true if the sequence number is close to wrap
/**
* Checks whether the sequence number is close to wrap.
*
* Sequence numbers are of type uint64 and may not exceed 2^64-1.
* Sequence numbers do not wrap. When the sequence number is near
* to wrap, we need to close the connection immediately.
*
* @return true if the sequence number is close to wrap
*/
abstract boolean seqNumOverflow();
Checks whether the sequence number close to renew.
Sequence numbers are of type uint64 and may not exceed 2^64-1.
Sequence numbers do not wrap. If a TLS
implementation would need to wrap a sequence number, it must
renegotiate instead.
Returns: true if the sequence number is huge enough to renew
/**
* Checks whether the sequence number close to renew.
*
* Sequence numbers are of type uint64 and may not exceed 2^64-1.
* Sequence numbers do not wrap. If a TLS
* implementation would need to wrap a sequence number, it must
* renegotiate instead.
*
* @return true if the sequence number is huge enough to renew
*/
abstract boolean seqNumIsHuge();
Gets the current sequence number, including the epoch number for
DTLS protocols.
Returns: the byte array of the current sequence number
/**
* Gets the current sequence number, including the epoch number for
* DTLS protocols.
*
* @return the byte array of the current sequence number
*/
final byte[] sequenceNumber() {
return Arrays.copyOf(block, 8);
}
Sets the epoch number (only apply to DTLS protocols).
/**
* Sets the epoch number (only apply to DTLS protocols).
*/
void setEpochNumber(int epoch) {
throw new UnsupportedOperationException(
"Epoch numbers apply to DTLS protocols only");
}
Increase the sequence number.
/**
* Increase the sequence number.
*/
final void increaseSequenceNumber() {
/*
* The sequence number in the block array is a 64-bit
* number stored in big-endian format.
*/
int k = 7;
while ((k >= 0) && (++block[k] == 0)) {
k--;
}
}
Acquires the current message authentication information with the
specified record type and fragment length, and then increases the
sequence number if using implicit sequence number.
Params: - type – the record type
- length – the fragment of the record
- sequence – the explicit sequence number of the record
Returns: the byte array of the current message authentication information
/**
* Acquires the current message authentication information with the
* specified record type and fragment length, and then increases the
* sequence number if using implicit sequence number.
*
* @param type the record type
* @param length the fragment of the record
* @param sequence the explicit sequence number of the record
*
* @return the byte array of the current message authentication information
*/
byte[] acquireAuthenticationBytes(
byte type, int length, byte[] sequence) {
throw new UnsupportedOperationException("Used by AEAD algorithms only");
}
private static class SSLAuthenticator extends Authenticator {
private SSLAuthenticator(byte[] block) {
super(block);
}
@Override
boolean seqNumOverflow() {
/*
* Conservatively, we don't allow more records to be generated
* when there are only 2^8 sequence numbers left.
*/
return (block.length != 0 &&
block[0] == (byte)0xFF && block[1] == (byte)0xFF &&
block[2] == (byte)0xFF && block[3] == (byte)0xFF &&
block[4] == (byte)0xFF && block[5] == (byte)0xFF &&
block[6] == (byte)0xFF);
}
@Override
boolean seqNumIsHuge() {
return (block.length != 0 &&
block[0] == (byte)0xFF && block[1] == (byte)0xFF &&
block[2] == (byte)0xFF && block[3] == (byte)0xFF);
}
}
// For null MAC only.
private static class SSLNullAuthenticator extends SSLAuthenticator {
private SSLNullAuthenticator() {
super(new byte[8]);
}
}
// For SSL 3.0
private static class SSL30Authenticator extends SSLAuthenticator {
// Block size of SSL v3.0:
// sequence number + record type + + record length
private static final int BLOCK_SIZE = 11; // 8 + 1 + 2
private SSL30Authenticator() {
super(new byte[BLOCK_SIZE]);
}
@Override
byte[] acquireAuthenticationBytes(
byte type, int length, byte[] sequence) {
byte[] ad = block.clone();
// Increase the implicit sequence number in the block array.
increaseSequenceNumber();
ad[8] = type;
ad[9] = (byte)(length >> 8);
ad[10] = (byte)(length);
return ad;
}
}
// For TLS 1.0 - 1.2
private static class TLS10Authenticator extends SSLAuthenticator {
// Block size of TLS v1.0/1.1/1.2.
// sequence number + record type + protocol version + record length
private static final int BLOCK_SIZE = 13; // 8 + 1 + 2 + 2
private TLS10Authenticator(ProtocolVersion protocolVersion) {
super(new byte[BLOCK_SIZE]);
block[9] = protocolVersion.major;
block[10] = protocolVersion.minor;
}
@Override
byte[] acquireAuthenticationBytes(
byte type, int length, byte[] sequence) {
byte[] ad = block.clone();
if (sequence != null) {
if (sequence.length != 8) {
throw new RuntimeException(
"Insufficient explicit sequence number bytes");
}
System.arraycopy(sequence, 0, ad, 0, sequence.length);
} else { // Otherwise, use the implicit sequence number.
// Increase the implicit sequence number in the block array.
increaseSequenceNumber();
}
ad[8] = type;
ad[11] = (byte)(length >> 8);
ad[12] = (byte)(length);
return ad;
}
}
// For TLS 1.3
private static final class TLS13Authenticator extends SSLAuthenticator {
// Block size of TLS v1.3:
// record type + protocol version + record length + sequence number
private static final int BLOCK_SIZE = 13; // 1 + 2 + 2 + 8
private TLS13Authenticator(ProtocolVersion protocolVersion) {
super(new byte[BLOCK_SIZE]);
block[9] = ProtocolVersion.TLS12.major;
block[10] = ProtocolVersion.TLS12.minor;
}
@Override
byte[] acquireAuthenticationBytes(
byte type, int length, byte[] sequence) {
byte[] ad = Arrays.copyOfRange(block, 8, 13);
// Increase the implicit sequence number in the block array.
increaseSequenceNumber();
ad[0] = type;
ad[3] = (byte)(length >> 8);
ad[4] = (byte)(length & 0xFF);
return ad;
}
}
private static class DTLSAuthenticator extends Authenticator {
private DTLSAuthenticator(byte[] block) {
super(block);
}
@Override
boolean seqNumOverflow() {
/*
* Conservatively, we don't allow more records to be generated
* when there are only 2^8 sequence numbers left.
*/
return (block.length != 0 &&
// no epoch bytes, block[0] and block[1]
block[2] == (byte)0xFF && block[3] == (byte)0xFF &&
block[4] == (byte)0xFF && block[5] == (byte)0xFF &&
block[6] == (byte)0xFF);
}
@Override
boolean seqNumIsHuge() {
return (block.length != 0 &&
// no epoch bytes, block[0] and block[1]
block[2] == (byte)0xFF && block[3] == (byte)0xFF);
}
@Override
void setEpochNumber(int epoch) {
block[0] = (byte)((epoch >> 8) & 0xFF);
block[1] = (byte)(epoch & 0xFF);
}
}
// For null MAC only.
private static class DTLSNullAuthenticator extends DTLSAuthenticator {
private DTLSNullAuthenticator() {
// For DTLS protocols, plaintexts use explicit epoch and
// sequence number in each record. The first 8 byte of
// the block is initialized for null MAC so that the
// epoch and sequence number can be acquired to generate
// plaintext records.
super(new byte[8]);
}
}
// DTLS 1.0/1.2
private static class DTLS10Authenticator extends DTLSAuthenticator {
// Block size of DTLS v1.0 and later:
// epoch + sequence number +
// record type + protocol version + record length
private static final int BLOCK_SIZE = 13; // 2 + 6 + 1 + 2 + 2;
private DTLS10Authenticator(ProtocolVersion protocolVersion) {
super(new byte[BLOCK_SIZE]);
block[9] = protocolVersion.major;
block[10] = protocolVersion.minor;
}
@Override
byte[] acquireAuthenticationBytes(
byte type, int length, byte[] sequence) {
byte[] ad = block.clone();
if (sequence != null) {
if (sequence.length != 8) {
throw new RuntimeException(
"Insufficient explicit sequence number bytes");
}
System.arraycopy(sequence, 0, ad, 0, sequence.length);
} else { // Otherwise, use the implicit sequence number.
// Increase the implicit sequence number in the block array.
increaseSequenceNumber();
}
ad[8] = type;
ad[11] = (byte)(length >> 8);
ad[12] = (byte)(length);
return ad;
}
}
// DTLS 1.3
private static final class DTLS13Authenticator extends DTLSAuthenticator {
// Block size of DTLS v1.0 and later:
// epoch + sequence number +
// record type + protocol version + record length
private static final int BLOCK_SIZE = 13; // 2 + 6 + 1 + 2 + 2;
private DTLS13Authenticator(ProtocolVersion protocolVersion) {
super(new byte[BLOCK_SIZE]);
block[9] = ProtocolVersion.TLS12.major;
block[10] = ProtocolVersion.TLS12.minor;
}
@Override
byte[] acquireAuthenticationBytes(
byte type, int length, byte[] sequence) {
byte[] ad = Arrays.copyOfRange(block, 8, 13);
// Increase the implicit sequence number in the block array.
increaseSequenceNumber();
ad[0] = type;
ad[3] = (byte)(length >> 8);
ad[4] = (byte)(length & 0xFF);
return ad;
}
}
interface MAC {
MacAlg macAlg();
Compute and returns the MAC for the remaining data
in this ByteBuffer.
On return, the bb position == limit, and limit will
have not changed.
Params: - type – record type
- bb – a ByteBuffer in which the position and limit
demarcate the data to be MAC'd.
- isSimulated – if true, simulate the MAC computation
- sequence – the explicit sequence number, or null if using
the implicit sequence number for the computation
Returns: the MAC result
/**
* Compute and returns the MAC for the remaining data
* in this ByteBuffer.
*
* On return, the bb position == limit, and limit will
* have not changed.
*
* @param type record type
* @param bb a ByteBuffer in which the position and limit
* demarcate the data to be MAC'd.
* @param isSimulated if true, simulate the MAC computation
* @param sequence the explicit sequence number, or null if using
* the implicit sequence number for the computation
*
* @return the MAC result
*/
byte[] compute(byte type, ByteBuffer bb,
byte[] sequence, boolean isSimulated);
Compute and returns the MAC for the remaining data
in this ByteBuffer.
On return, the bb position == limit, and limit will
have not changed.
Params: - type – record type
- bb – a ByteBuffer in which the position and limit
demarcate the data to be MAC'd.
- isSimulated – if true, simulate the MAC computation
Returns: the MAC result
/**
* Compute and returns the MAC for the remaining data
* in this ByteBuffer.
*
* On return, the bb position == limit, and limit will
* have not changed.
*
* @param type record type
* @param bb a ByteBuffer in which the position and limit
* demarcate the data to be MAC'd.
* @param isSimulated if true, simulate the MAC computation
*
* @return the MAC result
*/
default byte[] compute(byte type, ByteBuffer bb, boolean isSimulated) {
return compute(type, bb, null, isSimulated);
}
}
private class MacImpl implements MAC {
// internal identifier for the MAC algorithm
private final MacAlg macAlg;
// JCE Mac object
private final Mac mac;
private MacImpl() {
macAlg = MacAlg.M_NULL;
mac = null;
}
private MacImpl(ProtocolVersion protocolVersion, MacAlg macAlg,
SecretKey key) throws NoSuchAlgorithmException,
InvalidKeyException {
if (macAlg == null) {
throw new RuntimeException("Null MacAlg");
}
// using SSL MAC computation?
boolean useSSLMac = (protocolVersion.id < ProtocolVersion.TLS10.id);
String algorithm;
switch (macAlg) {
case M_MD5:
algorithm = useSSLMac ? "SslMacMD5" : "HmacMD5";
break;
case M_SHA:
algorithm = useSSLMac ? "SslMacSHA1" : "HmacSHA1";
break;
case M_SHA256:
algorithm = "HmacSHA256"; // TLS 1.2+
break;
case M_SHA384:
algorithm = "HmacSHA384"; // TLS 1.2+
break;
default:
throw new RuntimeException("Unknown MacAlg " + macAlg);
}
Mac m = JsseJce.getMac(algorithm);
m.init(key);
this.macAlg = macAlg;
this.mac = m;
}
@Override
public MacAlg macAlg() {
return macAlg;
}
@Override
public byte[] compute(byte type, ByteBuffer bb,
byte[] sequence, boolean isSimulated) {
if (macAlg.size == 0) {
return new byte[0];
}
if (!isSimulated) {
// Uses the explicit sequence number for the computation.
byte[] additional =
acquireAuthenticationBytes(type, bb.remaining(), sequence);
mac.update(additional);
}
mac.update(bb);
return mac.doFinal();
}
}
// NULL SSL MAC
private static final
class SSLNullMac extends SSLNullAuthenticator implements MAC {
private final MacImpl macImpl;
public SSLNullMac() {
super();
this.macImpl = new MacImpl();
}
@Override
public MacAlg macAlg() {
return macImpl.macAlg;
}
@Override
public byte[] compute(byte type, ByteBuffer bb,
byte[] sequence, boolean isSimulated) {
return macImpl.compute(type, bb, sequence, isSimulated);
}
}
// For SSL 3.0
private static final
class SSL30Mac extends SSL30Authenticator implements MAC {
private final MacImpl macImpl;
public SSL30Mac(ProtocolVersion protocolVersion,
MacAlg macAlg, SecretKey key) throws NoSuchAlgorithmException,
InvalidKeyException {
super();
this.macImpl = new MacImpl(protocolVersion, macAlg, key);
}
@Override
public MacAlg macAlg() {
return macImpl.macAlg;
}
@Override
public byte[] compute(byte type, ByteBuffer bb,
byte[] sequence, boolean isSimulated) {
return macImpl.compute(type, bb, sequence, isSimulated);
}
}
// For TLS 1.0 - 1.2
private static final
class TLS10Mac extends TLS10Authenticator implements MAC {
private final MacImpl macImpl;
public TLS10Mac(ProtocolVersion protocolVersion,
MacAlg macAlg, SecretKey key) throws NoSuchAlgorithmException,
InvalidKeyException {
super(protocolVersion);
this.macImpl = new MacImpl(protocolVersion, macAlg, key);
}
@Override
public MacAlg macAlg() {
return macImpl.macAlg;
}
@Override
public byte[] compute(byte type, ByteBuffer bb,
byte[] sequence, boolean isSimulated) {
return macImpl.compute(type, bb, sequence, isSimulated);
}
}
// NULL DTLS MAC
private static final
class DTLSNullMac extends DTLSNullAuthenticator implements MAC {
private final MacImpl macImpl;
public DTLSNullMac() {
super();
this.macImpl = new MacImpl();
}
@Override
public MacAlg macAlg() {
return macImpl.macAlg;
}
@Override
public byte[] compute(byte type, ByteBuffer bb,
byte[] sequence, boolean isSimulated) {
return macImpl.compute(type, bb, sequence, isSimulated);
}
}
// DTLS 1.0/1.2
private static final class DTLS10Mac
extends DTLS10Authenticator implements MAC {
private final MacImpl macImpl;
public DTLS10Mac(ProtocolVersion protocolVersion,
MacAlg macAlg, SecretKey key) throws NoSuchAlgorithmException,
InvalidKeyException {
super(protocolVersion);
this.macImpl = new MacImpl(protocolVersion, macAlg, key);
}
@Override
public MacAlg macAlg() {
return macImpl.macAlg;
}
@Override
public byte[] compute(byte type, ByteBuffer bb,
byte[] sequence, boolean isSimulated) {
return macImpl.compute(type, bb, sequence, isSimulated);
}
}
static final long toLong(byte[] recordEnS) {
if (recordEnS != null && recordEnS.length == 8) {
return ((recordEnS[0] & 0xFFL) << 56) |
((recordEnS[1] & 0xFFL) << 48) |
((recordEnS[2] & 0xFFL) << 40) |
((recordEnS[3] & 0xFFL) << 32) |
((recordEnS[4] & 0xFFL) << 24) |
((recordEnS[5] & 0xFFL) << 16) |
((recordEnS[6] & 0xFFL) << 8) |
(recordEnS[7] & 0xFFL);
}
return -1L;
}
}