/*
 * Copyright (c) 2009, 2016, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */



package org.graalvm.compiler.core.amd64;

import static jdk.vm.ci.code.ValueUtil.asRegister;
import static jdk.vm.ci.code.ValueUtil.isAllocatableValue;
import static jdk.vm.ci.code.ValueUtil.isRegister;
import static org.graalvm.compiler.asm.amd64.AMD64Assembler.AMD64BinaryArithmetic.CMP;
import static org.graalvm.compiler.asm.amd64.AMD64Assembler.OperandSize.DWORD;
import static org.graalvm.compiler.asm.amd64.AMD64Assembler.OperandSize.PD;
import static org.graalvm.compiler.asm.amd64.AMD64Assembler.OperandSize.PS;
import static org.graalvm.compiler.asm.amd64.AMD64Assembler.OperandSize.QWORD;
import static org.graalvm.compiler.core.common.GraalOptions.GeneratePIC;
import static org.graalvm.compiler.lir.LIRValueUtil.asConstant;
import static org.graalvm.compiler.lir.LIRValueUtil.asConstantValue;
import static org.graalvm.compiler.lir.LIRValueUtil.asJavaConstant;
import static org.graalvm.compiler.lir.LIRValueUtil.isConstantValue;
import static org.graalvm.compiler.lir.LIRValueUtil.isIntConstant;
import static org.graalvm.compiler.lir.LIRValueUtil.isJavaConstant;

import org.graalvm.compiler.asm.amd64.AMD64Assembler.AMD64BinaryArithmetic;
import org.graalvm.compiler.asm.amd64.AMD64Assembler.AMD64MIOp;
import org.graalvm.compiler.asm.amd64.AMD64Assembler.AMD64RMOp;
import org.graalvm.compiler.asm.amd64.AMD64Assembler.ConditionFlag;
import org.graalvm.compiler.asm.amd64.AMD64Assembler.OperandSize;
import org.graalvm.compiler.asm.amd64.AMD64Assembler.SSEOp;
import org.graalvm.compiler.core.common.LIRKind;
import org.graalvm.compiler.core.common.NumUtil;
import org.graalvm.compiler.core.common.calc.Condition;
import org.graalvm.compiler.core.common.spi.ForeignCallLinkage;
import org.graalvm.compiler.core.common.spi.LIRKindTool;
import org.graalvm.compiler.debug.GraalError;
import org.graalvm.compiler.lir.ConstantValue;
import org.graalvm.compiler.lir.LIRFrameState;
import org.graalvm.compiler.lir.LIRInstruction;
import org.graalvm.compiler.lir.LIRValueUtil;
import org.graalvm.compiler.lir.LabelRef;
import org.graalvm.compiler.lir.StandardOp.JumpOp;
import org.graalvm.compiler.lir.StandardOp.SaveRegistersOp;
import org.graalvm.compiler.lir.SwitchStrategy;
import org.graalvm.compiler.lir.Variable;
import org.graalvm.compiler.lir.amd64.AMD64AddressValue;
import org.graalvm.compiler.lir.amd64.AMD64ArithmeticLIRGeneratorTool;
import org.graalvm.compiler.lir.amd64.AMD64ArrayCompareToOp;
import org.graalvm.compiler.lir.amd64.AMD64ArrayEqualsOp;
import org.graalvm.compiler.lir.amd64.AMD64Binary;
import org.graalvm.compiler.lir.amd64.AMD64BinaryConsumer;
import org.graalvm.compiler.lir.amd64.AMD64ByteSwapOp;
import org.graalvm.compiler.lir.amd64.AMD64Call;
import org.graalvm.compiler.lir.amd64.AMD64ControlFlow;
import org.graalvm.compiler.lir.amd64.AMD64ControlFlow.BranchOp;
import org.graalvm.compiler.lir.amd64.AMD64ControlFlow.CondMoveOp;
import org.graalvm.compiler.lir.amd64.AMD64ControlFlow.CondSetOp;
import org.graalvm.compiler.lir.amd64.AMD64ControlFlow.FloatBranchOp;
import org.graalvm.compiler.lir.amd64.AMD64ControlFlow.FloatCondMoveOp;
import org.graalvm.compiler.lir.amd64.AMD64ControlFlow.FloatCondSetOp;
import org.graalvm.compiler.lir.amd64.AMD64ControlFlow.ReturnOp;
import org.graalvm.compiler.lir.amd64.AMD64ControlFlow.StrategySwitchOp;
import org.graalvm.compiler.lir.amd64.AMD64ControlFlow.TableSwitchOp;
import org.graalvm.compiler.lir.amd64.AMD64LFenceOp;
import org.graalvm.compiler.lir.amd64.AMD64Move;
import org.graalvm.compiler.lir.amd64.AMD64Move.CompareAndSwapOp;
import org.graalvm.compiler.lir.amd64.AMD64Move.MembarOp;
import org.graalvm.compiler.lir.amd64.AMD64Move.StackLeaOp;
import org.graalvm.compiler.lir.amd64.AMD64PauseOp;
import org.graalvm.compiler.lir.amd64.AMD64StringIndexOfOp;
import org.graalvm.compiler.lir.amd64.AMD64ZapRegistersOp;
import org.graalvm.compiler.lir.amd64.AMD64ZapStackOp;
import org.graalvm.compiler.lir.gen.LIRGenerationResult;
import org.graalvm.compiler.lir.gen.LIRGenerator;
import org.graalvm.compiler.phases.util.Providers;

import jdk.vm.ci.amd64.AMD64;
import jdk.vm.ci.amd64.AMD64Kind;
import jdk.vm.ci.code.CallingConvention;
import jdk.vm.ci.code.Register;
import jdk.vm.ci.code.RegisterValue;
import jdk.vm.ci.code.StackSlot;
import jdk.vm.ci.meta.AllocatableValue;
import jdk.vm.ci.meta.JavaConstant;
import jdk.vm.ci.meta.JavaKind;
import jdk.vm.ci.meta.PlatformKind;
import jdk.vm.ci.meta.VMConstant;
import jdk.vm.ci.meta.Value;
import jdk.vm.ci.meta.ValueKind;

This class implements the AMD64 specific portion of the LIR generator.
/** * This class implements the AMD64 specific portion of the LIR generator. */
public abstract class AMD64LIRGenerator extends LIRGenerator { public AMD64LIRGenerator(LIRKindTool lirKindTool, AMD64ArithmeticLIRGenerator arithmeticLIRGen, MoveFactory moveFactory, Providers providers, LIRGenerationResult lirGenRes) { super(lirKindTool, arithmeticLIRGen, moveFactory, providers, lirGenRes); }
Checks whether the supplied constant can be used without loading it into a register for store operations, i.e., on the right hand side of a memory access.
Params:
  • c – The constant to check.
Returns:True if the constant can be used directly, false if the constant needs to be in a register.
/** * Checks whether the supplied constant can be used without loading it into a register for store * operations, i.e., on the right hand side of a memory access. * * @param c The constant to check. * @return True if the constant can be used directly, false if the constant needs to be in a * register. */
protected static final boolean canStoreConstant(JavaConstant c) { // there is no immediate move of 64-bit constants on Intel switch (c.getJavaKind()) { case Long: return NumUtil.isInt(c.asLong()); case Double: return false; case Object: return c.isNull(); default: return true; } } @Override protected JavaConstant zapValueForKind(PlatformKind kind) { long dead = 0xDEADDEADDEADDEADL; switch ((AMD64Kind) kind) { case BYTE: return JavaConstant.forByte((byte) dead); case WORD: return JavaConstant.forShort((short) dead); case DWORD: return JavaConstant.forInt((int) dead); case QWORD: return JavaConstant.forLong(dead); case SINGLE: return JavaConstant.forFloat(Float.intBitsToFloat((int) dead)); default: // we don't support vector types, so just zap with double for all of them return JavaConstant.forDouble(Double.longBitsToDouble(dead)); } } public AMD64AddressValue asAddressValue(Value address) { if (address instanceof AMD64AddressValue) { return (AMD64AddressValue) address; } else { if (address instanceof JavaConstant) { long displacement = ((JavaConstant) address).asLong(); if (NumUtil.isInt(displacement)) { return new AMD64AddressValue(address.getValueKind(), Value.ILLEGAL, (int) displacement); } } return new AMD64AddressValue(address.getValueKind(), asAllocatable(address), 0); } } @Override public Variable emitAddress(AllocatableValue stackslot) { Variable result = newVariable(LIRKind.value(target().arch.getWordKind())); append(new StackLeaOp(result, stackslot)); return result; }
The AMD64 backend only uses DWORD and QWORD values in registers because of a performance penalty when accessing WORD or BYTE registers. This function converts small integer kinds to DWORD.
/** * The AMD64 backend only uses DWORD and QWORD values in registers because of a performance * penalty when accessing WORD or BYTE registers. This function converts small integer kinds to * DWORD. */
@Override public <K extends ValueKind<K>> K toRegisterKind(K kind) { switch ((AMD64Kind) kind.getPlatformKind()) { case BYTE: case WORD: return kind.changeType(AMD64Kind.DWORD); default: return kind; } } private AllocatableValue asAllocatable(Value value, ValueKind<?> kind) { if (value.getValueKind().equals(kind)) { return asAllocatable(value); } else if (isRegister(value)) { return asRegister(value).asValue(kind); } else if (isConstantValue(value)) { return emitLoadConstant(kind, asConstant(value)); } else { Variable variable = newVariable(kind); emitMove(variable, value); return variable; } } private Value emitCompareAndSwap(boolean isLogic, LIRKind accessKind, Value address, Value expectedValue, Value newValue, Value trueValue, Value falseValue) { ValueKind<?> kind = newValue.getValueKind(); assert kind.equals(expectedValue.getValueKind()); AMD64AddressValue addressValue = asAddressValue(address); LIRKind integralAccessKind = accessKind; Value reinterpretedExpectedValue = expectedValue; Value reinterpretedNewValue = newValue; boolean isXmm = ((AMD64Kind) accessKind.getPlatformKind()).isXMM(); if (isXmm) { if (accessKind.getPlatformKind().equals(AMD64Kind.SINGLE)) { integralAccessKind = LIRKind.fromJavaKind(target().arch, JavaKind.Int); } else { integralAccessKind = LIRKind.fromJavaKind(target().arch, JavaKind.Long); } reinterpretedExpectedValue = arithmeticLIRGen.emitReinterpret(integralAccessKind, expectedValue); reinterpretedNewValue = arithmeticLIRGen.emitReinterpret(integralAccessKind, newValue); } AMD64Kind memKind = (AMD64Kind) integralAccessKind.getPlatformKind(); RegisterValue aRes = AMD64.rax.asValue(integralAccessKind); AllocatableValue allocatableNewValue = asAllocatable(reinterpretedNewValue, integralAccessKind); emitMove(aRes, reinterpretedExpectedValue); append(new CompareAndSwapOp(memKind, aRes, addressValue, aRes, allocatableNewValue)); if (isLogic) { assert trueValue.getValueKind().equals(falseValue.getValueKind()); Variable result = newVariable(trueValue.getValueKind()); append(new CondMoveOp(result, Condition.EQ, asAllocatable(trueValue), falseValue)); return result; } else { if (isXmm) { return arithmeticLIRGen.emitReinterpret(accessKind, aRes); } else { Variable result = newVariable(kind); emitMove(result, aRes); return result; } } } @Override public Variable emitLogicCompareAndSwap(LIRKind accessKind, Value address, Value expectedValue, Value newValue, Value trueValue, Value falseValue) { return (Variable) emitCompareAndSwap(true, accessKind, address, expectedValue, newValue, trueValue, falseValue); } @Override public Value emitValueCompareAndSwap(LIRKind accessKind, Value address, Value expectedValue, Value newValue) { return emitCompareAndSwap(false, accessKind, address, expectedValue, newValue, null, null); } public void emitCompareAndSwapBranch(ValueKind<?> kind, AMD64AddressValue address, Value expectedValue, Value newValue, Condition condition, LabelRef trueLabel, LabelRef falseLabel, double trueLabelProbability) { assert kind.equals(expectedValue.getValueKind()); assert kind.equals(newValue.getValueKind()); assert condition == Condition.EQ || condition == Condition.NE; AMD64Kind memKind = (AMD64Kind) kind.getPlatformKind(); RegisterValue raxValue = AMD64.rax.asValue(kind); emitMove(raxValue, expectedValue); append(new CompareAndSwapOp(memKind, raxValue, address, raxValue, asAllocatable(newValue))); append(new BranchOp(condition, trueLabel, falseLabel, trueLabelProbability)); } @Override public Value emitAtomicReadAndAdd(Value address, ValueKind<?> kind, Value delta) { Variable result = newVariable(kind); AMD64AddressValue addressValue = asAddressValue(address); append(new AMD64Move.AtomicReadAndAddOp((AMD64Kind) kind.getPlatformKind(), result, addressValue, asAllocatable(delta))); return result; } @Override public Value emitAtomicReadAndWrite(Value address, ValueKind<?> kind, Value newValue) { Variable result = newVariable(kind); AMD64AddressValue addressValue = asAddressValue(address); append(new AMD64Move.AtomicReadAndWriteOp((AMD64Kind) kind.getPlatformKind(), result, addressValue, asAllocatable(newValue))); return result; } @Override public void emitNullCheck(Value address, LIRFrameState state) { append(new AMD64Move.NullCheckOp(asAddressValue(address), state)); } @Override public void emitJump(LabelRef label) { assert label != null; append(new JumpOp(label)); } @Override public void emitCompareBranch(PlatformKind cmpKind, Value left, Value right, Condition cond, boolean unorderedIsTrue, LabelRef trueLabel, LabelRef falseLabel, double trueLabelProbability) { Condition finalCondition = emitCompare(cmpKind, left, right, cond); if (cmpKind == AMD64Kind.SINGLE || cmpKind == AMD64Kind.DOUBLE) { append(new FloatBranchOp(finalCondition, unorderedIsTrue, trueLabel, falseLabel, trueLabelProbability)); } else { append(new BranchOp(finalCondition, trueLabel, falseLabel, trueLabelProbability)); } } public void emitCompareBranchMemory(AMD64Kind cmpKind, Value left, AMD64AddressValue right, LIRFrameState state, Condition cond, boolean unorderedIsTrue, LabelRef trueLabel, LabelRef falseLabel, double trueLabelProbability) { boolean mirrored = emitCompareMemory(cmpKind, left, right, state); Condition finalCondition = mirrored ? cond.mirror() : cond; if (cmpKind.isXMM()) { append(new FloatBranchOp(finalCondition, unorderedIsTrue, trueLabel, falseLabel, trueLabelProbability)); } else { append(new BranchOp(finalCondition, trueLabel, falseLabel, trueLabelProbability)); } } @Override public void emitOverflowCheckBranch(LabelRef overflow, LabelRef noOverflow, LIRKind cmpLIRKind, double overflowProbability) { append(new BranchOp(ConditionFlag.Overflow, overflow, noOverflow, overflowProbability)); } @Override public void emitIntegerTestBranch(Value left, Value right, LabelRef trueDestination, LabelRef falseDestination, double trueDestinationProbability) { emitIntegerTest(left, right); append(new BranchOp(Condition.EQ, trueDestination, falseDestination, trueDestinationProbability)); } @Override public Variable emitConditionalMove(PlatformKind cmpKind, Value left, Value right, Condition cond, boolean unorderedIsTrue, Value trueValue, Value falseValue) { boolean isFloatComparison = cmpKind == AMD64Kind.SINGLE || cmpKind == AMD64Kind.DOUBLE; Condition finalCondition = cond; Value finalTrueValue = trueValue; Value finalFalseValue = falseValue; if (isFloatComparison) { // eliminate the parity check in case of a float comparison Value finalLeft = left; Value finalRight = right; if (unorderedIsTrue != AMD64ControlFlow.trueOnUnordered(finalCondition)) { if (unorderedIsTrue == AMD64ControlFlow.trueOnUnordered(finalCondition.mirror())) { finalCondition = finalCondition.mirror(); finalLeft = right; finalRight = left; } else if (finalCondition != Condition.EQ && finalCondition != Condition.NE) { // negating EQ and NE does not make any sense as we would need to negate // unorderedIsTrue as well (otherwise, we would no longer fulfill the Java // NaN semantics) assert unorderedIsTrue == AMD64ControlFlow.trueOnUnordered(finalCondition.negate()); finalCondition = finalCondition.negate(); finalTrueValue = falseValue; finalFalseValue = trueValue; } } emitRawCompare(cmpKind, finalLeft, finalRight); } else { finalCondition = emitCompare(cmpKind, left, right, cond); } boolean isParityCheckNecessary = isFloatComparison && unorderedIsTrue != AMD64ControlFlow.trueOnUnordered(finalCondition); Variable result = newVariable(finalTrueValue.getValueKind()); if (!isParityCheckNecessary && isIntConstant(finalTrueValue, 1) && isIntConstant(finalFalseValue, 0)) { if (isFloatComparison) { append(new FloatCondSetOp(result, finalCondition)); } else { append(new CondSetOp(result, finalCondition)); } } else if (!isParityCheckNecessary && isIntConstant(finalTrueValue, 0) && isIntConstant(finalFalseValue, 1)) { if (isFloatComparison) { if (unorderedIsTrue == AMD64ControlFlow.trueOnUnordered(finalCondition.negate())) { append(new FloatCondSetOp(result, finalCondition.negate())); } else { append(new FloatCondSetOp(result, finalCondition)); Variable negatedResult = newVariable(result.getValueKind()); append(new AMD64Binary.ConstOp(AMD64BinaryArithmetic.XOR, OperandSize.get(result.getPlatformKind()), negatedResult, result, 1)); result = negatedResult; } } else { append(new CondSetOp(result, finalCondition.negate())); } } else if (isFloatComparison) { append(new FloatCondMoveOp(result, finalCondition, unorderedIsTrue, load(finalTrueValue), load(finalFalseValue))); } else { append(new CondMoveOp(result, finalCondition, load(finalTrueValue), loadNonConst(finalFalseValue))); } return result; } @Override public Variable emitIntegerTestMove(Value left, Value right, Value trueValue, Value falseValue) { emitIntegerTest(left, right); Variable result = newVariable(trueValue.getValueKind()); append(new CondMoveOp(result, Condition.EQ, load(trueValue), loadNonConst(falseValue))); return result; } private void emitIntegerTest(Value a, Value b) { assert ((AMD64Kind) a.getPlatformKind()).isInteger(); OperandSize size = a.getPlatformKind() == AMD64Kind.QWORD ? QWORD : DWORD; if (isJavaConstant(b) && NumUtil.is32bit(asJavaConstant(b).asLong())) { append(new AMD64BinaryConsumer.ConstOp(AMD64MIOp.TEST, size, asAllocatable(a), (int) asJavaConstant(b).asLong())); } else if (isJavaConstant(a) && NumUtil.is32bit(asJavaConstant(a).asLong())) { append(new AMD64BinaryConsumer.ConstOp(AMD64MIOp.TEST, size, asAllocatable(b), (int) asJavaConstant(a).asLong())); } else if (isAllocatableValue(b)) { append(new AMD64BinaryConsumer.Op(AMD64RMOp.TEST, size, asAllocatable(b), asAllocatable(a))); } else { append(new AMD64BinaryConsumer.Op(AMD64RMOp.TEST, size, asAllocatable(a), asAllocatable(b))); } }
This method emits the compare against memory instruction, and may reorder the operands. It returns true if it did so.
Params:
  • b – the right operand of the comparison
Returns:true if the left and right operands were switched, false otherwise
/** * This method emits the compare against memory instruction, and may reorder the operands. It * returns true if it did so. * * @param b the right operand of the comparison * @return true if the left and right operands were switched, false otherwise */
private boolean emitCompareMemory(AMD64Kind cmpKind, Value a, AMD64AddressValue b, LIRFrameState state) { OperandSize size; switch (cmpKind) { case BYTE: size = OperandSize.BYTE; break; case WORD: size = OperandSize.WORD; break; case DWORD: size = OperandSize.DWORD; break; case QWORD: size = OperandSize.QWORD; break; case SINGLE: append(new AMD64BinaryConsumer.MemoryRMOp(SSEOp.UCOMIS, PS, asAllocatable(a), b, state)); return false; case DOUBLE: append(new AMD64BinaryConsumer.MemoryRMOp(SSEOp.UCOMIS, PD, asAllocatable(a), b, state)); return false; default: throw GraalError.shouldNotReachHere("unexpected kind: " + cmpKind); } if (isConstantValue(a)) { return emitCompareMemoryConOp(size, asConstantValue(a), b, state); } else { return emitCompareRegMemoryOp(size, asAllocatable(a), b, state); } } protected boolean emitCompareMemoryConOp(OperandSize size, ConstantValue a, AMD64AddressValue b, LIRFrameState state) { if (JavaConstant.isNull(a.getConstant())) { append(new AMD64BinaryConsumer.MemoryConstOp(CMP, size, b, 0, state)); return true; } else if (a.getConstant() instanceof VMConstant && size == DWORD) { VMConstant vc = (VMConstant) a.getConstant(); append(new AMD64BinaryConsumer.MemoryVMConstOp(CMP.getMIOpcode(size, false), b, vc, state)); return true; } else { long value = a.getJavaConstant().asLong(); if (NumUtil.is32bit(value)) { append(new AMD64BinaryConsumer.MemoryConstOp(CMP, size, b, (int) value, state)); return true; } else { return emitCompareRegMemoryOp(size, asAllocatable(a), b, state); } } } private boolean emitCompareRegMemoryOp(OperandSize size, AllocatableValue a, AMD64AddressValue b, LIRFrameState state) { AMD64RMOp op = CMP.getRMOpcode(size); append(new AMD64BinaryConsumer.MemoryRMOp(op, size, a, b, state)); return false; }
This method emits the compare instruction, and may reorder the operands. It returns true if it did so.
Params:
  • a – the left operand of the comparison
  • b – the right operand of the comparison
  • cond – the condition of the comparison
Returns:true if the left and right operands were switched, false otherwise
/** * This method emits the compare instruction, and may reorder the operands. It returns true if * it did so. * * @param a the left operand of the comparison * @param b the right operand of the comparison * @param cond the condition of the comparison * @return true if the left and right operands were switched, false otherwise */
private Condition emitCompare(PlatformKind cmpKind, Value a, Value b, Condition cond) { if (LIRValueUtil.isVariable(b)) { emitRawCompare(cmpKind, b, a); return cond.mirror(); } else { emitRawCompare(cmpKind, a, b); return cond; } } private void emitRawCompare(PlatformKind cmpKind, Value left, Value right) { ((AMD64ArithmeticLIRGeneratorTool) arithmeticLIRGen).emitCompareOp((AMD64Kind) cmpKind, load(left), loadNonConst(right)); } @Override public void emitMembar(int barriers) { int necessaryBarriers = target().arch.requiredBarriers(barriers); if (target().isMP && necessaryBarriers != 0) { append(new MembarOp(necessaryBarriers)); } } public abstract void emitCCall(long address, CallingConvention nativeCallingConvention, Value[] args, int numberOfFloatingPointArguments); @Override protected void emitForeignCallOp(ForeignCallLinkage linkage, Value result, Value[] arguments, Value[] temps, LIRFrameState info) { long maxOffset = linkage.getMaxCallTargetOffset(); if (maxOffset != (int) maxOffset && !GeneratePIC.getValue(getResult().getLIR().getOptions())) { append(new AMD64Call.DirectFarForeignCallOp(linkage, result, arguments, temps, info)); } else { append(new AMD64Call.DirectNearForeignCallOp(linkage, result, arguments, temps, info)); } } @Override public Variable emitByteSwap(Value input) { Variable result = newVariable(LIRKind.combine(input)); append(new AMD64ByteSwapOp(result, input)); return result; } @Override public Variable emitArrayCompareTo(JavaKind kind1, JavaKind kind2, Value array1, Value array2, Value length1, Value length2) { LIRKind resultKind = LIRKind.value(AMD64Kind.DWORD); RegisterValue raxRes = AMD64.rax.asValue(resultKind); RegisterValue cnt1 = AMD64.rcx.asValue(length1.getValueKind()); RegisterValue cnt2 = AMD64.rdx.asValue(length2.getValueKind()); emitMove(cnt1, length1); emitMove(cnt2, length2); append(new AMD64ArrayCompareToOp(this, kind1, kind2, raxRes, array1, array2, cnt1, cnt2)); Variable result = newVariable(resultKind); emitMove(result, raxRes); return result; } @Override public Variable emitArrayEquals(JavaKind kind, Value array1, Value array2, Value length) { Variable result = newVariable(LIRKind.value(AMD64Kind.DWORD)); append(new AMD64ArrayEqualsOp(this, kind, result, array1, array2, asAllocatable(length))); return result; }
Return a conservative estimate of the page size for use by the String.indexOf intrinsic.
/** * Return a conservative estimate of the page size for use by the String.indexOf intrinsic. */
protected int getVMPageSize() { return 4096; } @Override public Variable emitStringIndexOf(Value source, Value sourceCount, Value target, Value targetCount, int constantTargetCount) { Variable result = newVariable(LIRKind.value(AMD64Kind.DWORD)); RegisterValue cnt1 = AMD64.rdx.asValue(sourceCount.getValueKind()); emitMove(cnt1, sourceCount); RegisterValue cnt2 = AMD64.rax.asValue(targetCount.getValueKind()); emitMove(cnt2, targetCount); append(new AMD64StringIndexOfOp(this, result, source, target, cnt1, cnt2, AMD64.rcx.asValue(), AMD64.xmm0.asValue(), constantTargetCount, getVMPageSize())); return result; } @Override public void emitReturn(JavaKind kind, Value input) { AllocatableValue operand = Value.ILLEGAL; if (input != null) { operand = resultOperandFor(kind, input.getValueKind()); emitMove(operand, input); } append(new ReturnOp(operand)); } protected StrategySwitchOp createStrategySwitchOp(SwitchStrategy strategy, LabelRef[] keyTargets, LabelRef defaultTarget, Variable key, AllocatableValue temp) { return new StrategySwitchOp(strategy, keyTargets, defaultTarget, key, temp); } @Override public void emitStrategySwitch(SwitchStrategy strategy, Variable key, LabelRef[] keyTargets, LabelRef defaultTarget) { // a temp is needed for loading object constants boolean needsTemp = !LIRKind.isValue(key); append(createStrategySwitchOp(strategy, keyTargets, defaultTarget, key, needsTemp ? newVariable(key.getValueKind()) : Value.ILLEGAL)); } @Override protected void emitTableSwitch(int lowKey, LabelRef defaultTarget, LabelRef[] targets, Value key) { append(new TableSwitchOp(lowKey, defaultTarget, targets, key, newVariable(LIRKind.value(target().arch.getWordKind())), newVariable(key.getValueKind()))); } @Override public void emitPause() { append(new AMD64PauseOp()); } @Override public SaveRegistersOp createZapRegisters(Register[] zappedRegisters, JavaConstant[] zapValues) { return new AMD64ZapRegistersOp(zappedRegisters, zapValues); } @Override public LIRInstruction createZapArgumentSpace(StackSlot[] zappedStack, JavaConstant[] zapValues) { return new AMD64ZapStackOp(zappedStack, zapValues); } public void emitLFence() { append(new AMD64LFenceOp()); } }