/*
 * Copyright (c) 2012, 2017, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */
package java.util.stream;

import java.util.IntSummaryStatistics;
import java.util.Objects;
import java.util.OptionalDouble;
import java.util.OptionalInt;
import java.util.PrimitiveIterator;
import java.util.Spliterator;
import java.util.Spliterators;
import java.util.function.BiConsumer;
import java.util.function.BinaryOperator;
import java.util.function.IntBinaryOperator;
import java.util.function.IntConsumer;
import java.util.function.IntFunction;
import java.util.function.IntPredicate;
import java.util.function.IntToDoubleFunction;
import java.util.function.IntToLongFunction;
import java.util.function.IntUnaryOperator;
import java.util.function.ObjIntConsumer;
import java.util.function.Supplier;

Abstract base class for an intermediate pipeline stage or pipeline source stage implementing whose elements are of type int.
Type parameters:
  • <E_IN> – type of elements in the upstream source
Since:1.8
/** * Abstract base class for an intermediate pipeline stage or pipeline source * stage implementing whose elements are of type {@code int}. * * @param <E_IN> type of elements in the upstream source * @since 1.8 */
abstract class IntPipeline<E_IN> extends AbstractPipeline<E_IN, Integer, IntStream> implements IntStream {
Constructor for the head of a stream pipeline.
Params:
  • source – Supplier<Spliterator> describing the stream source
  • sourceFlags – The source flags for the stream source, described in StreamOpFlag
  • parallel – true if the pipeline is parallel
/** * Constructor for the head of a stream pipeline. * * @param source {@code Supplier<Spliterator>} describing the stream source * @param sourceFlags The source flags for the stream source, described in * {@link StreamOpFlag} * @param parallel {@code true} if the pipeline is parallel */
IntPipeline(Supplier<? extends Spliterator<Integer>> source, int sourceFlags, boolean parallel) { super(source, sourceFlags, parallel); }
Constructor for the head of a stream pipeline.
Params:
  • source – Spliterator describing the stream source
  • sourceFlags – The source flags for the stream source, described in StreamOpFlag
  • parallel – true if the pipeline is parallel
/** * Constructor for the head of a stream pipeline. * * @param source {@code Spliterator} describing the stream source * @param sourceFlags The source flags for the stream source, described in * {@link StreamOpFlag} * @param parallel {@code true} if the pipeline is parallel */
IntPipeline(Spliterator<Integer> source, int sourceFlags, boolean parallel) { super(source, sourceFlags, parallel); }
Constructor for appending an intermediate operation onto an existing pipeline.
Params:
  • upstream – the upstream element source
  • opFlags – the operation flags for the new operation
/** * Constructor for appending an intermediate operation onto an existing * pipeline. * * @param upstream the upstream element source * @param opFlags the operation flags for the new operation */
IntPipeline(AbstractPipeline<?, E_IN, ?> upstream, int opFlags) { super(upstream, opFlags); }
Adapt a Sink<Integer> to an {@code IntConsumer}, ideally simply by casting.
/** * Adapt a {@code Sink<Integer> to an {@code IntConsumer}, ideally simply * by casting. */
private static IntConsumer adapt(Sink<Integer> sink) { if (sink instanceof IntConsumer) { return (IntConsumer) sink; } else { if (Tripwire.ENABLED) Tripwire.trip(AbstractPipeline.class, "using IntStream.adapt(Sink<Integer> s)"); return sink::accept; } }
Adapt a Spliterator<Integer> to a Spliterator.OfInt.
Implementation Note: The implementation attempts to cast to a Spliterator.OfInt, and throws an exception if this cast is not possible.
/** * Adapt a {@code Spliterator<Integer>} to a {@code Spliterator.OfInt}. * * @implNote * The implementation attempts to cast to a Spliterator.OfInt, and throws an * exception if this cast is not possible. */
private static Spliterator.OfInt adapt(Spliterator<Integer> s) { if (s instanceof Spliterator.OfInt) { return (Spliterator.OfInt) s; } else { if (Tripwire.ENABLED) Tripwire.trip(AbstractPipeline.class, "using IntStream.adapt(Spliterator<Integer> s)"); throw new UnsupportedOperationException("IntStream.adapt(Spliterator<Integer> s)"); } } // Shape-specific methods @Override final StreamShape getOutputShape() { return StreamShape.INT_VALUE; } @Override final <P_IN> Node<Integer> evaluateToNode(PipelineHelper<Integer> helper, Spliterator<P_IN> spliterator, boolean flattenTree, IntFunction<Integer[]> generator) { return Nodes.collectInt(helper, spliterator, flattenTree); } @Override final <P_IN> Spliterator<Integer> wrap(PipelineHelper<Integer> ph, Supplier<Spliterator<P_IN>> supplier, boolean isParallel) { return new StreamSpliterators.IntWrappingSpliterator<>(ph, supplier, isParallel); } @Override @SuppressWarnings("unchecked") final Spliterator.OfInt lazySpliterator(Supplier<? extends Spliterator<Integer>> supplier) { return new StreamSpliterators.DelegatingSpliterator.OfInt((Supplier<Spliterator.OfInt>) supplier); } @Override final boolean forEachWithCancel(Spliterator<Integer> spliterator, Sink<Integer> sink) { Spliterator.OfInt spl = adapt(spliterator); IntConsumer adaptedSink = adapt(sink); boolean cancelled; do { } while (!(cancelled = sink.cancellationRequested()) && spl.tryAdvance(adaptedSink)); return cancelled; } @Override final Node.Builder<Integer> makeNodeBuilder(long exactSizeIfKnown, IntFunction<Integer[]> generator) { return Nodes.intBuilder(exactSizeIfKnown); } private <U> Stream<U> mapToObj(IntFunction<? extends U> mapper, int opFlags) { return new ReferencePipeline.StatelessOp<Integer, U>(this, StreamShape.INT_VALUE, opFlags) { @Override Sink<Integer> opWrapSink(int flags, Sink<U> sink) { return new Sink.ChainedInt<U>(sink) { @Override public void accept(int t) { downstream.accept(mapper.apply(t)); } }; } }; } // IntStream @Override public final PrimitiveIterator.OfInt iterator() { return Spliterators.iterator(spliterator()); } @Override public final Spliterator.OfInt spliterator() { return adapt(super.spliterator()); } // Stateless intermediate ops from IntStream @Override public final LongStream asLongStream() { return new LongPipeline.StatelessOp<Integer>(this, StreamShape.INT_VALUE, 0) { @Override Sink<Integer> opWrapSink(int flags, Sink<Long> sink) { return new Sink.ChainedInt<Long>(sink) { @Override public void accept(int t) { downstream.accept((long) t); } }; } }; } @Override public final DoubleStream asDoubleStream() { return new DoublePipeline.StatelessOp<Integer>(this, StreamShape.INT_VALUE, 0) { @Override Sink<Integer> opWrapSink(int flags, Sink<Double> sink) { return new Sink.ChainedInt<Double>(sink) { @Override public void accept(int t) { downstream.accept((double) t); } }; } }; } @Override public final Stream<Integer> boxed() { return mapToObj(Integer::valueOf, 0); } @Override public final IntStream map(IntUnaryOperator mapper) { Objects.requireNonNull(mapper); return new StatelessOp<Integer>(this, StreamShape.INT_VALUE, StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) { @Override Sink<Integer> opWrapSink(int flags, Sink<Integer> sink) { return new Sink.ChainedInt<Integer>(sink) { @Override public void accept(int t) { downstream.accept(mapper.applyAsInt(t)); } }; } }; } @Override public final <U> Stream<U> mapToObj(IntFunction<? extends U> mapper) { Objects.requireNonNull(mapper); return mapToObj(mapper, StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT); } @Override public final LongStream mapToLong(IntToLongFunction mapper) { Objects.requireNonNull(mapper); return new LongPipeline.StatelessOp<Integer>(this, StreamShape.INT_VALUE, StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) { @Override Sink<Integer> opWrapSink(int flags, Sink<Long> sink) { return new Sink.ChainedInt<Long>(sink) { @Override public void accept(int t) { downstream.accept(mapper.applyAsLong(t)); } }; } }; } @Override public final DoubleStream mapToDouble(IntToDoubleFunction mapper) { Objects.requireNonNull(mapper); return new DoublePipeline.StatelessOp<Integer>(this, StreamShape.INT_VALUE, StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) { @Override Sink<Integer> opWrapSink(int flags, Sink<Double> sink) { return new Sink.ChainedInt<Double>(sink) { @Override public void accept(int t) { downstream.accept(mapper.applyAsDouble(t)); } }; } }; } @Override public final IntStream flatMap(IntFunction<? extends IntStream> mapper) { Objects.requireNonNull(mapper); return new StatelessOp<Integer>(this, StreamShape.INT_VALUE, StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT | StreamOpFlag.NOT_SIZED) { @Override Sink<Integer> opWrapSink(int flags, Sink<Integer> sink) { return new Sink.ChainedInt<Integer>(sink) { // true if cancellationRequested() has been called boolean cancellationRequestedCalled; // cache the consumer to avoid creation on every accepted element IntConsumer downstreamAsInt = downstream::accept; @Override public void begin(long size) { downstream.begin(-1); } @Override public void accept(int t) { try (IntStream result = mapper.apply(t)) { if (result != null) { if (!cancellationRequestedCalled) { result.sequential().forEach(downstreamAsInt); } else { var s = result.sequential().spliterator(); do { } while (!downstream.cancellationRequested() && s.tryAdvance(downstreamAsInt)); } } } } @Override public boolean cancellationRequested() { // If this method is called then an operation within the stream // pipeline is short-circuiting (see AbstractPipeline.copyInto). // Note that we cannot differentiate between an upstream or // downstream operation cancellationRequestedCalled = true; return downstream.cancellationRequested(); } }; } }; } @Override public IntStream unordered() { if (!isOrdered()) return this; return new StatelessOp<Integer>(this, StreamShape.INT_VALUE, StreamOpFlag.NOT_ORDERED) { @Override Sink<Integer> opWrapSink(int flags, Sink<Integer> sink) { return sink; } }; } @Override public final IntStream filter(IntPredicate predicate) { Objects.requireNonNull(predicate); return new StatelessOp<Integer>(this, StreamShape.INT_VALUE, StreamOpFlag.NOT_SIZED) { @Override Sink<Integer> opWrapSink(int flags, Sink<Integer> sink) { return new Sink.ChainedInt<Integer>(sink) { @Override public void begin(long size) { downstream.begin(-1); } @Override public void accept(int t) { if (predicate.test(t)) downstream.accept(t); } }; } }; } @Override public final IntStream peek(IntConsumer action) { Objects.requireNonNull(action); return new StatelessOp<Integer>(this, StreamShape.INT_VALUE, 0) { @Override Sink<Integer> opWrapSink(int flags, Sink<Integer> sink) { return new Sink.ChainedInt<Integer>(sink) { @Override public void accept(int t) { action.accept(t); downstream.accept(t); } }; } }; } // Stateful intermediate ops from IntStream @Override public final IntStream limit(long maxSize) { if (maxSize < 0) throw new IllegalArgumentException(Long.toString(maxSize)); return SliceOps.makeInt(this, 0, maxSize); } @Override public final IntStream skip(long n) { if (n < 0) throw new IllegalArgumentException(Long.toString(n)); if (n == 0) return this; else return SliceOps.makeInt(this, n, -1); } @Override public final IntStream takeWhile(IntPredicate predicate) { return WhileOps.makeTakeWhileInt(this, predicate); } @Override public final IntStream dropWhile(IntPredicate predicate) { return WhileOps.makeDropWhileInt(this, predicate); } @Override public final IntStream sorted() { return SortedOps.makeInt(this); } @Override public final IntStream distinct() { // While functional and quick to implement, this approach is not very efficient. // An efficient version requires an int-specific map/set implementation. return boxed().distinct().mapToInt(i -> i); } // Terminal ops from IntStream @Override public void forEach(IntConsumer action) { evaluate(ForEachOps.makeInt(action, false)); } @Override public void forEachOrdered(IntConsumer action) { evaluate(ForEachOps.makeInt(action, true)); } @Override public final int sum() { return reduce(0, Integer::sum); } @Override public final OptionalInt min() { return reduce(Math::min); } @Override public final OptionalInt max() { return reduce(Math::max); } @Override public final long count() { return evaluate(ReduceOps.makeIntCounting()); } @Override public final OptionalDouble average() { long[] avg = collect(() -> new long[2], (ll, i) -> { ll[0]++; ll[1] += i; }, (ll, rr) -> { ll[0] += rr[0]; ll[1] += rr[1]; }); return avg[0] > 0 ? OptionalDouble.of((double) avg[1] / avg[0]) : OptionalDouble.empty(); } @Override public final IntSummaryStatistics summaryStatistics() { return collect(IntSummaryStatistics::new, IntSummaryStatistics::accept, IntSummaryStatistics::combine); } @Override public final int reduce(int identity, IntBinaryOperator op) { return evaluate(ReduceOps.makeInt(identity, op)); } @Override public final OptionalInt reduce(IntBinaryOperator op) { return evaluate(ReduceOps.makeInt(op)); } @Override public final <R> R collect(Supplier<R> supplier, ObjIntConsumer<R> accumulator, BiConsumer<R, R> combiner) { Objects.requireNonNull(combiner); BinaryOperator<R> operator = (left, right) -> { combiner.accept(left, right); return left; }; return evaluate(ReduceOps.makeInt(supplier, accumulator, operator)); } @Override public final boolean anyMatch(IntPredicate predicate) { return evaluate(MatchOps.makeInt(predicate, MatchOps.MatchKind.ANY)); } @Override public final boolean allMatch(IntPredicate predicate) { return evaluate(MatchOps.makeInt(predicate, MatchOps.MatchKind.ALL)); } @Override public final boolean noneMatch(IntPredicate predicate) { return evaluate(MatchOps.makeInt(predicate, MatchOps.MatchKind.NONE)); } @Override public final OptionalInt findFirst() { return evaluate(FindOps.makeInt(true)); } @Override public final OptionalInt findAny() { return evaluate(FindOps.makeInt(false)); } @Override public final int[] toArray() { return Nodes.flattenInt((Node.OfInt) evaluateToArrayNode(Integer[]::new)) .asPrimitiveArray(); } //
Source stage of an IntStream.
Type parameters:
  • <E_IN> – type of elements in the upstream source
Since:1.8
/** * Source stage of an IntStream. * * @param <E_IN> type of elements in the upstream source * @since 1.8 */
static class Head<E_IN> extends IntPipeline<E_IN> {
Constructor for the source stage of an IntStream.
Params:
  • source – Supplier<Spliterator> describing the stream source
  • sourceFlags – the source flags for the stream source, described in StreamOpFlag
  • parallel – true if the pipeline is parallel
/** * Constructor for the source stage of an IntStream. * * @param source {@code Supplier<Spliterator>} describing the stream * source * @param sourceFlags the source flags for the stream source, described * in {@link StreamOpFlag} * @param parallel {@code true} if the pipeline is parallel */
Head(Supplier<? extends Spliterator<Integer>> source, int sourceFlags, boolean parallel) { super(source, sourceFlags, parallel); }
Constructor for the source stage of an IntStream.
Params:
  • source – Spliterator describing the stream source
  • sourceFlags – the source flags for the stream source, described in StreamOpFlag
  • parallel – true if the pipeline is parallel
/** * Constructor for the source stage of an IntStream. * * @param source {@code Spliterator} describing the stream source * @param sourceFlags the source flags for the stream source, described * in {@link StreamOpFlag} * @param parallel {@code true} if the pipeline is parallel */
Head(Spliterator<Integer> source, int sourceFlags, boolean parallel) { super(source, sourceFlags, parallel); } @Override final boolean opIsStateful() { throw new UnsupportedOperationException(); } @Override final Sink<E_IN> opWrapSink(int flags, Sink<Integer> sink) { throw new UnsupportedOperationException(); } // Optimized sequential terminal operations for the head of the pipeline @Override public void forEach(IntConsumer action) { if (!isParallel()) { adapt(sourceStageSpliterator()).forEachRemaining(action); } else { super.forEach(action); } } @Override public void forEachOrdered(IntConsumer action) { if (!isParallel()) { adapt(sourceStageSpliterator()).forEachRemaining(action); } else { super.forEachOrdered(action); } } }
Base class for a stateless intermediate stage of an IntStream
Type parameters:
  • <E_IN> – type of elements in the upstream source
Since:1.8
/** * Base class for a stateless intermediate stage of an IntStream * * @param <E_IN> type of elements in the upstream source * @since 1.8 */
abstract static class StatelessOp<E_IN> extends IntPipeline<E_IN> {
Construct a new IntStream by appending a stateless intermediate operation to an existing stream.
Params:
  • upstream – The upstream pipeline stage
  • inputShape – The stream shape for the upstream pipeline stage
  • opFlags – Operation flags for the new stage
/** * Construct a new IntStream by appending a stateless intermediate * operation to an existing stream. * @param upstream The upstream pipeline stage * @param inputShape The stream shape for the upstream pipeline stage * @param opFlags Operation flags for the new stage */
StatelessOp(AbstractPipeline<?, E_IN, ?> upstream, StreamShape inputShape, int opFlags) { super(upstream, opFlags); assert upstream.getOutputShape() == inputShape; } @Override final boolean opIsStateful() { return false; } }
Base class for a stateful intermediate stage of an IntStream.
Type parameters:
  • <E_IN> – type of elements in the upstream source
Since:1.8
/** * Base class for a stateful intermediate stage of an IntStream. * * @param <E_IN> type of elements in the upstream source * @since 1.8 */
abstract static class StatefulOp<E_IN> extends IntPipeline<E_IN> {
Construct a new IntStream by appending a stateful intermediate operation to an existing stream.
Params:
  • upstream – The upstream pipeline stage
  • inputShape – The stream shape for the upstream pipeline stage
  • opFlags – Operation flags for the new stage
/** * Construct a new IntStream by appending a stateful intermediate * operation to an existing stream. * @param upstream The upstream pipeline stage * @param inputShape The stream shape for the upstream pipeline stage * @param opFlags Operation flags for the new stage */
StatefulOp(AbstractPipeline<?, E_IN, ?> upstream, StreamShape inputShape, int opFlags) { super(upstream, opFlags); assert upstream.getOutputShape() == inputShape; } @Override final boolean opIsStateful() { return true; } @Override abstract <P_IN> Node<Integer> opEvaluateParallel(PipelineHelper<Integer> helper, Spliterator<P_IN> spliterator, IntFunction<Integer[]> generator); } }