/*
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

/*
 * This file is available under and governed by the GNU General Public
 * License version 2 only, as published by the Free Software Foundation.
 * However, the following notice accompanied the original version of this
 * file:
 *
 * Written by Doug Lea with assistance from members of JCP JSR-166
 * Expert Group and released to the public domain, as explained at
 * http://creativecommons.org/publicdomain/zero/1.0/
 */

package java.util.concurrent;

import java.util.concurrent.locks.AbstractQueuedSynchronizer;

A synchronization aid that allows one or more threads to wait until a set of operations being performed in other threads completes.

A CountDownLatch is initialized with a given count. The await methods block until the current count reaches zero due to invocations of the countDown method, after which all waiting threads are released and any subsequent invocations of await return immediately. This is a one-shot phenomenon -- the count cannot be reset. If you need a version that resets the count, consider using a CyclicBarrier.

A CountDownLatch is a versatile synchronization tool and can be used for a number of purposes. A CountDownLatch initialized with a count of one serves as a simple on/off latch, or gate: all threads invoking await wait at the gate until it is opened by a thread invoking countDown. A CountDownLatch initialized to N can be used to make one thread wait until N threads have completed some action, or some action has been completed N times.

A useful property of a CountDownLatch is that it doesn't require that threads calling countDown wait for the count to reach zero before proceeding, it simply prevents any thread from proceeding past an await until all threads could pass.

Sample usage: Here is a pair of classes in which a group of worker threads use two countdown latches:

  • The first is a start signal that prevents any worker from proceeding until the driver is ready for them to proceed;
  • The second is a completion signal that allows the driver to wait until all workers have completed.
 
class Driver { // ...
  void main() throws InterruptedException {
    CountDownLatch startSignal = new CountDownLatch(1);
    CountDownLatch doneSignal = new CountDownLatch(N);
    for (int i = 0; i < N; ++i) // create and start threads
      new Thread(new Worker(startSignal, doneSignal)).start();
    doSomethingElse();            // don't let run yet
    startSignal.countDown();      // let all threads proceed
    doSomethingElse();
    doneSignal.await();           // wait for all to finish
  }
 }
class Worker implements Runnable {
  private final CountDownLatch startSignal;
  private final CountDownLatch doneSignal;
  Worker(CountDownLatch startSignal, CountDownLatch doneSignal) {
    this.startSignal = startSignal;
    this.doneSignal = doneSignal;
  }
  public void run() {
    try {
      startSignal.await();
      doWork();
      doneSignal.countDown();
    } catch (InterruptedException ex) {} // return;
  }
  void doWork() { ... }
 }

Another typical usage would be to divide a problem into N parts, describe each part with a Runnable that executes that portion and counts down on the latch, and queue all the Runnables to an Executor. When all sub-parts are complete, the coordinating thread will be able to pass through await. (When threads must repeatedly count down in this way, instead use a CyclicBarrier.)

 
class Driver2 { // ...
  void main() throws InterruptedException {
    CountDownLatch doneSignal = new CountDownLatch(N);
    Executor e = ...
    for (int i = 0; i < N; ++i) // create and start threads
      e.execute(new WorkerRunnable(doneSignal, i));
    doneSignal.await();           // wait for all to finish
  }
 }
class WorkerRunnable implements Runnable {
  private final CountDownLatch doneSignal;
  private final int i;
  WorkerRunnable(CountDownLatch doneSignal, int i) {
    this.doneSignal = doneSignal;
    this.i = i;
  }
  public void run() {
    try {
      doWork(i);
      doneSignal.countDown();
    } catch (InterruptedException ex) {} // return;
  }
  void doWork() { ... }
 }

Memory consistency effects: Until the count reaches zero, actions in a thread prior to calling countDown() happen-before actions following a successful return from a corresponding await() in another thread.

Author:Doug Lea
Since:1.5
/** * A synchronization aid that allows one or more threads to wait until * a set of operations being performed in other threads completes. * * <p>A {@code CountDownLatch} is initialized with a given <em>count</em>. * The {@link #await await} methods block until the current count reaches * zero due to invocations of the {@link #countDown} method, after which * all waiting threads are released and any subsequent invocations of * {@link #await await} return immediately. This is a one-shot phenomenon * -- the count cannot be reset. If you need a version that resets the * count, consider using a {@link CyclicBarrier}. * * <p>A {@code CountDownLatch} is a versatile synchronization tool * and can be used for a number of purposes. A * {@code CountDownLatch} initialized with a count of one serves as a * simple on/off latch, or gate: all threads invoking {@link #await await} * wait at the gate until it is opened by a thread invoking {@link * #countDown}. A {@code CountDownLatch} initialized to <em>N</em> * can be used to make one thread wait until <em>N</em> threads have * completed some action, or some action has been completed N times. * * <p>A useful property of a {@code CountDownLatch} is that it * doesn't require that threads calling {@code countDown} wait for * the count to reach zero before proceeding, it simply prevents any * thread from proceeding past an {@link #await await} until all * threads could pass. * * <p><b>Sample usage:</b> Here is a pair of classes in which a group * of worker threads use two countdown latches: * <ul> * <li>The first is a start signal that prevents any worker from proceeding * until the driver is ready for them to proceed; * <li>The second is a completion signal that allows the driver to wait * until all workers have completed. * </ul> * * <pre> {@code * class Driver { // ... * void main() throws InterruptedException { * CountDownLatch startSignal = new CountDownLatch(1); * CountDownLatch doneSignal = new CountDownLatch(N); * * for (int i = 0; i < N; ++i) // create and start threads * new Thread(new Worker(startSignal, doneSignal)).start(); * * doSomethingElse(); // don't let run yet * startSignal.countDown(); // let all threads proceed * doSomethingElse(); * doneSignal.await(); // wait for all to finish * } * } * * class Worker implements Runnable { * private final CountDownLatch startSignal; * private final CountDownLatch doneSignal; * Worker(CountDownLatch startSignal, CountDownLatch doneSignal) { * this.startSignal = startSignal; * this.doneSignal = doneSignal; * } * public void run() { * try { * startSignal.await(); * doWork(); * doneSignal.countDown(); * } catch (InterruptedException ex) {} // return; * } * * void doWork() { ... } * }}</pre> * * <p>Another typical usage would be to divide a problem into N parts, * describe each part with a Runnable that executes that portion and * counts down on the latch, and queue all the Runnables to an * Executor. When all sub-parts are complete, the coordinating thread * will be able to pass through await. (When threads must repeatedly * count down in this way, instead use a {@link CyclicBarrier}.) * * <pre> {@code * class Driver2 { // ... * void main() throws InterruptedException { * CountDownLatch doneSignal = new CountDownLatch(N); * Executor e = ... * * for (int i = 0; i < N; ++i) // create and start threads * e.execute(new WorkerRunnable(doneSignal, i)); * * doneSignal.await(); // wait for all to finish * } * } * * class WorkerRunnable implements Runnable { * private final CountDownLatch doneSignal; * private final int i; * WorkerRunnable(CountDownLatch doneSignal, int i) { * this.doneSignal = doneSignal; * this.i = i; * } * public void run() { * try { * doWork(i); * doneSignal.countDown(); * } catch (InterruptedException ex) {} // return; * } * * void doWork() { ... } * }}</pre> * * <p>Memory consistency effects: Until the count reaches * zero, actions in a thread prior to calling * {@code countDown()} * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a> * actions following a successful return from a corresponding * {@code await()} in another thread. * * @since 1.5 * @author Doug Lea */
public class CountDownLatch {
Synchronization control For CountDownLatch. Uses AQS state to represent count.
/** * Synchronization control For CountDownLatch. * Uses AQS state to represent count. */
private static final class Sync extends AbstractQueuedSynchronizer { private static final long serialVersionUID = 4982264981922014374L; Sync(int count) { setState(count); } int getCount() { return getState(); } protected int tryAcquireShared(int acquires) { return (getState() == 0) ? 1 : -1; } protected boolean tryReleaseShared(int releases) { // Decrement count; signal when transition to zero for (;;) { int c = getState(); if (c == 0) return false; int nextc = c - 1; if (compareAndSetState(c, nextc)) return nextc == 0; } } } private final Sync sync;
Constructs a CountDownLatch initialized with the given count.
Params:
  • count – the number of times countDown must be invoked before threads can pass through await
Throws:
/** * Constructs a {@code CountDownLatch} initialized with the given count. * * @param count the number of times {@link #countDown} must be invoked * before threads can pass through {@link #await} * @throws IllegalArgumentException if {@code count} is negative */
public CountDownLatch(int count) { if (count < 0) throw new IllegalArgumentException("count < 0"); this.sync = new Sync(count); }
Causes the current thread to wait until the latch has counted down to zero, unless the thread is interrupted.

If the current count is zero then this method returns immediately.

If the current count is greater than zero then the current thread becomes disabled for thread scheduling purposes and lies dormant until one of two things happen:

  • The count reaches zero due to invocations of the countDown method; or
  • Some other thread interrupts the current thread.

If the current thread:

  • has its interrupted status set on entry to this method; or
  • is interrupted while waiting,
then InterruptedException is thrown and the current thread's interrupted status is cleared.
Throws:
/** * Causes the current thread to wait until the latch has counted down to * zero, unless the thread is {@linkplain Thread#interrupt interrupted}. * * <p>If the current count is zero then this method returns immediately. * * <p>If the current count is greater than zero then the current * thread becomes disabled for thread scheduling purposes and lies * dormant until one of two things happen: * <ul> * <li>The count reaches zero due to invocations of the * {@link #countDown} method; or * <li>Some other thread {@linkplain Thread#interrupt interrupts} * the current thread. * </ul> * * <p>If the current thread: * <ul> * <li>has its interrupted status set on entry to this method; or * <li>is {@linkplain Thread#interrupt interrupted} while waiting, * </ul> * then {@link InterruptedException} is thrown and the current thread's * interrupted status is cleared. * * @throws InterruptedException if the current thread is interrupted * while waiting */
public void await() throws InterruptedException { sync.acquireSharedInterruptibly(1); }
Causes the current thread to wait until the latch has counted down to zero, unless the thread is interrupted, or the specified waiting time elapses.

If the current count is zero then this method returns immediately with the value true.

If the current count is greater than zero then the current thread becomes disabled for thread scheduling purposes and lies dormant until one of three things happen:

  • The count reaches zero due to invocations of the countDown method; or
  • Some other thread interrupts the current thread; or
  • The specified waiting time elapses.

If the count reaches zero then the method returns with the value true.

If the current thread:

  • has its interrupted status set on entry to this method; or
  • is interrupted while waiting,
then InterruptedException is thrown and the current thread's interrupted status is cleared.

If the specified waiting time elapses then the value false is returned. If the time is less than or equal to zero, the method will not wait at all.

Params:
  • timeout – the maximum time to wait
  • unit – the time unit of the timeout argument
Throws:
Returns:true if the count reached zero and false if the waiting time elapsed before the count reached zero
/** * Causes the current thread to wait until the latch has counted down to * zero, unless the thread is {@linkplain Thread#interrupt interrupted}, * or the specified waiting time elapses. * * <p>If the current count is zero then this method returns immediately * with the value {@code true}. * * <p>If the current count is greater than zero then the current * thread becomes disabled for thread scheduling purposes and lies * dormant until one of three things happen: * <ul> * <li>The count reaches zero due to invocations of the * {@link #countDown} method; or * <li>Some other thread {@linkplain Thread#interrupt interrupts} * the current thread; or * <li>The specified waiting time elapses. * </ul> * * <p>If the count reaches zero then the method returns with the * value {@code true}. * * <p>If the current thread: * <ul> * <li>has its interrupted status set on entry to this method; or * <li>is {@linkplain Thread#interrupt interrupted} while waiting, * </ul> * then {@link InterruptedException} is thrown and the current thread's * interrupted status is cleared. * * <p>If the specified waiting time elapses then the value {@code false} * is returned. If the time is less than or equal to zero, the method * will not wait at all. * * @param timeout the maximum time to wait * @param unit the time unit of the {@code timeout} argument * @return {@code true} if the count reached zero and {@code false} * if the waiting time elapsed before the count reached zero * @throws InterruptedException if the current thread is interrupted * while waiting */
public boolean await(long timeout, TimeUnit unit) throws InterruptedException { return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout)); }
Decrements the count of the latch, releasing all waiting threads if the count reaches zero.

If the current count is greater than zero then it is decremented. If the new count is zero then all waiting threads are re-enabled for thread scheduling purposes.

If the current count equals zero then nothing happens.

/** * Decrements the count of the latch, releasing all waiting threads if * the count reaches zero. * * <p>If the current count is greater than zero then it is decremented. * If the new count is zero then all waiting threads are re-enabled for * thread scheduling purposes. * * <p>If the current count equals zero then nothing happens. */
public void countDown() { sync.releaseShared(1); }
Returns the current count.

This method is typically used for debugging and testing purposes.

Returns:the current count
/** * Returns the current count. * * <p>This method is typically used for debugging and testing purposes. * * @return the current count */
public long getCount() { return sync.getCount(); }
Returns a string identifying this latch, as well as its state. The state, in brackets, includes the String "Count =" followed by the current count.
Returns:a string identifying this latch, as well as its state
/** * Returns a string identifying this latch, as well as its state. * The state, in brackets, includes the String {@code "Count ="} * followed by the current count. * * @return a string identifying this latch, as well as its state */
public String toString() { return super.toString() + "[Count = " + sync.getCount() + "]"; } }